Классификация, источники развития. Строение и функции различных типов клеток глии. Нейроглия. Основные виды Функции нейроглии опорная защитная трофическая разграничительная питательная

Нейроглия представляет собой среду, окружающую нейроциты и выполняющую в нервной ткани опорную, разграничительную, трофическую и защитную функции. Избирательность обмена веществ между нервной тканью и кровью обеспечивается, помимо морфологических особенностей самих капилляров (сплошная эндотелиальная выстилка, плотная базальная мембрана) также и тем, что отростки глиоцитов, прежде всего астроцитов, образуют на поверхности капилляров слой, отграничивающий нейроны от непосредственного соприкосновения с сосудистой стенкой. Таким образом, формируется гематоэнцефалический барьер.

Нейроглия состоит из клеток, которые делятся на два генетически различных вида:

1) Глиоциты (макроглия);

2) Глиальные макрофаги (микроглия).

Глиоциты

Глиоциты в свою очередь делятся на:

1) эпендимоциты; 2) астроциты; 3) олигодендроциты.

Эпендимоциты образуют плотный эпителиоподобный слой клеток, выстилающих спинномозговой канал и все желудочки мозга.

Эпендимоциты дифференцируются первыми из глиобластов нервной трубки, выполняя на этой стадии развития разграничительную и опорную функции. На внутренней поверхности нервной трубки вытянутые тела образуют слой эпителиоподобных клеток. На клетках, обращенных в полость канала нервной трубки, образуются реснички, количество которых на одной клетке может достигать до 40. Реснички способствуют, очевидно, движению цереброспинальной жидкости. От базальной части эпендимоцита отходят длинные отростки, которые разветвляясь пересекают всю нервную трубку и образуют поддерживающий ее аппарат. Эти отростки на внешней поверхности принимают участие в образовании поверхностной глиальной пограничной мембраны, которая отделяет вещество трубки от других тканей.

После рождеия эпендимоциты постепенно теряют реснички, сохраняются они только в некоторых частях центральной нервной системы (водопровод среднего мозга).

В области задней комиссуры головного мозга эпендимоциты выполняют секреторную функцию и образуют «субкомиссуральный орган», выделяющий секрет, который, как предполагают, принимает участие в регуляции водного обмена.

Эпендимоциты, которые покрывают сосудистые сплетения желудочков мозга имеют кубическую форму, у новорожденных на их поверхности располагаются реснички, которые позже редуцируются. Цитоплазма базального полюса образует многочисленные глубокие складки, содержит крупные митохондрии, включения жира, пигментов.

Астроциты - это небольшие клетки звездчатой формы, с многочисленными расходящимися во все стороны отростками.

Различают два типа астроцитов:

1) протоплазматические;

2) волокнистые (фиброзные).

Протоплазматические астроциты

¨Локализация - серое вещество мозга.

¨Размеры - 15-25 мкм, имеют короткие и толстые сильно разветвленные отростки.

¨Ядро - крупное, овальное, светлое.

¨Цитоплазма - содержит небольшое количество цистерн эндоплазматической сети, свободных рибосом и микротрубочек, богата митохондриями.

¨Функция - разграничения и трофическая.

Волокнистые астроциты.

¨Локализация - белое вещество мозга.

¨Размеры - до 20 мкм, имеют 20-40 гладкоконтурированных, длинных, слабоветвящихся отростков, которые формируют глиальные волокна, образующие плотную сеть - поддерживающий аппарат мозга. Отростки астроцитов на кровеносных сосудах и на поверхности мозга своими концевыми расширениями формируют периваскулярные глиальные пограничные мембраны.

¨Цитоплазма - при электронно-микроскопическом исследовании светлая, держит мало рибосом и элементы гранулярной эндоплазматической сети, заполнена многочисленными фибриллами диаметром 8-9 нм, которые в виде пучков выходят в отростки.

¨Ядро - большое, светлое, ядерная оболочка иногда образует глубокие складки, а кариоплазма характеризуется равномерной электронной плотностью.

¨Функция - опорная и изоляция нейронов от внешних влияний.

Олигодендроциты - самая многочисленная и полиморфная группа глиоцитов, ответственная за выработку миелина в ЦНС.

¨Локализация - они окружают тела нейронов в центральной и периферической нервной системе, находятся в составе оболочек нервных волокон и нервных окончаний.

¨Размеры клеток очень небольшие.

¨Форма - разные отделы нервной системы характеризуются различной формой олигодендроцитов (овальная, угловатая). От тела клеток отходит несколько коротких и слаборазветвленных отростков.

¨Цитоплазма - плотность ее близка к таковой нервных клеток, не содержит нейрофиламентов.

¨Функция - выполняют трофическую функцию, участвуя в обмене веществ нервных клеток. Играют значительную роль в образовании оболочек вокруг отростков клеток при этом они называются нейролеммоцитами (шванновские клетки), участвуют в водно-солевом обмене, процессах дегенерации и регенерации.

Нейроглия - обширная гетерогенная группа элементов нервной ткани, обеспечивающая деятельность нейронов и выполняющая неспецифические функции: опорную, трофическую, разграничительную, барьерную, секреторную и защитную функции. Является вспомагательным компанентом нервной ткани.

В мозге человека содержание глиальных клеток (глиоцитов) в 5-10 раз превышает число нейронов, причем они занимают около половины его объема. В отличие от нейронов, глиоциты взрослого способны к делению. В поврежденных участках мозга они размножаются, заполняя дефекты и образуя глиальные рубцы (глиоз); опухоли из клеток глии (глиомы) составляют 50% внутричерепных новообразований.

КЛАССИФИКАЦИЯ И ФУНКЦИОНАЛЬНАЯ МОРФОЛОГИЯ НЕЙРОГЛИИ

Нейроглия включает макроглию и микроглию. Макроглия подразделяется на: астроцитарную глию (астроглию), олигодендроглию и эпендимную глию (рис.8.7.).

Астророглия (от греч. astra - звезда и glia - клей) представлена ас-троцитами – самыми крупными из глиальных клеток, которые встречаются во всех отделах нервной системы.

А Б

Рис. 8.7. А – Схема астроцита (astrocyte). Концевые образования отростков, отходящих от тела радиально оплетают кровеносный сосуд (blood vessels), участвуя в образовании гематоэнцефалического барьера. Б – Астроциты имеющие звездчатую форму, располагаются в сером веществе мозга, ограничивая рецепторные поля нейронов.(х400 импрегнация солями серебра).

Астроциты характеризуются светлым овальным ядром, цитоплазмой с умеренно развитыми важнейшими органеллами, многочисленными гранулами гликогена и промежуточными филаментами. На концах отростков имеются пластинчатые расширения ("ножки"), которые, соединяясь друг с другом, в виде мембран окружают сосуды или нейроны (рис.8.7.А)

Астроциты подразделяются на две группы:

  1. Протоплазматические (плазматические) астроциты встречаются преимущественно в сером веществе ЦНС; для них характерно наличие многочисленных разветвленных коротких сравнительно толстых отростков.
  2. Волокнистые (фиброзные) астроциты располагаются, в основном, в белом веществе ЦНС. От их тел отходят длинные тонкие незначительно ветвящиеся отростки.

Функции астроцитов:

1. Опорная - формирование опорного каркаса ЦНС, внутри которого располагаются другие клетки и волокна; в ходе эмбрионального развития служат опорными и направляющими элементами, вдоль которых происходит миграция развивающихся нейронов. Направляющая функция связана также с секрецией ростовых факторов и продукцией определенных компонентов межклеточного вещества, распознаваемых эмбриональными нейронами и их отростками.



2. Разграничительная, транспортная и барьерная (направлена на обеспечение оптимального микроокружения нейронов): образование периваскулярных пограничных мембран уплощенными концевыми участками отростков, которые охватывают снаружи капилляры, формируя основу гемато-энцефалического барьера (ГЭБ) ГЭБ отделяет нейроны ЦНС от крови и тканей внутренней среды.

3. Метаболическая и регуляторная – считается одной из наиболее важных функций астроцитов, которая направлена на поддержание определенных концентраций ионов К + и медиаторов в микроокружении нейронов. Астроциты совместно с клетками олигодендроглии принимают участие в метаболизме медиаторов (катехоламинов, ГАМК, пептидов, аминокислот), активно захватывая их из синаптической щели после осуществления синаптической передачи и далее передавая их нейрону;

4. Защитная (фагоцитарная, иммунная и репаративная) - участие в различных защитных реакциях при повреждении нервной ткани, Астроциты, как и клетки микроглии (см. ниже) характеризуются выраженной фагоцитарной активностью На завершающих этапах воспалительных реакций в ЦНС астроциты, разрастаясь, формируют на месте поврежденной ткани глиалъный рубец.

Эпендимная глия, или эпендима (от греч. ependyma - верхняя одежда, т.е. выстилка) образована клетками кубической или цилиндрической формы (эпендимоцитами), однослойные пласты которых выстилают полости желудочков головного мозга и центрального канала спинного мозга (см. рис 8.8.). К эпендимной глии ряд авторов относит и плоские клетки, образующие выстилки мозговых оболочек (менинготелий).

Рис. 8.8. На электронной микрофотографии изображены: Клетки эпендимы кубовидной формы, образуют пласт, выстилая стенки желудочка мозга, спинномозговой канал.(х400). На свободный поверхности клеток – реснички.

Ядро эпендимоцитов содержит плотный хроматин, органеллы умеренно развиты. Апикальная поверхность часть эпендимоцитов несет реснички, которые своими движениями перемещают СМЖ, а от базального полюса некоторых клеток отходит длинный отросток, протягивающийся до поверхности мозга и входящий в состав поверхностной пограничной глиальной мембраны (краевой глии).

Функции эпендимной глии:

1. опорная (за счет базальных отростков);

2. образование барьеров:

Нейро-ликворного (с высокой проницаемостью),

Гемато-ликворного

3. ультрафильтрация компонентов СМЖ

Олигодендроглия (от греч. oligo - мало, dendron - дерево и glia - клей, т.е. глия с малым количеством отростков) – обширная группа разнообразных мелких клеток (олигодендроцитов) с короткими немногочисленными отростками, которые окружают тела нейронов, входят состав нервных волокон и. нервных окончаний (рис.8.9.). Встречаются в ЦНС (сером и белом веществе) и ПНС; характеризуются темным ядром; плотной цитоплазмой с хорошо развитым синтетическим аппаратом, высоким содержанием митохондрий, лизосом и гранул гликогена.

А Б

Рис. 8.9. А – Схема олигодендроцита. Б – олигодендроцит (O). В цитоплазме присутствуют ЭПС, рибосомы, микротрубочки, хорошо развит аппарат Гольджи (G), рядом тело нейрона (N), хорошо виден дендрит (D), миелинизированный аксон (М).(х 13000).

Микроглия - совокупность мелких удлиненных звездчатых клеток (микроглиоцитов) с плотной цитоплазмой и сравнительно короткими ветвящимися отростками, располагающихся преимущественно вдоль капилляров в ЦНС (см. рис. 8.10.). В отличие от клеток макроглии, они имеют мезенхимное происхождение, развиваясь непосредственно из моноцитов (или периваскулярньгх макрофагов мозга) и относятся к макрофагально-моноцитарной системе. Для них характерны ядра с преобладанием гетерохроматина и высокое содержание лизосом в цитоплазме.

Рис. 8.10. Схема микроглиоцита (microglial cell).

Функция микроглии – защитная (в том числе иммунная). Клетки микроглии традиционно рассматривают как специализированные макрофаги ЦНС - они обладают значительной подвижностью, активируясь и увеличиваясь в числе при воспалительных и дегенеративных заболеваниях нервной системы, погибших клеток (детрит).

Нервная система состоит не только из нейронов, но и из отростков. В ней есть глиальные клетки, необходимые человеку для жизнедеятельности. С их помощью нервная система ограничена от прочих сред организма, что обеспечивает важные функции человека. У клеток есть особенности деления, и этим они отличаются от нейронов.

Скопление клеток имеет название нейроглия или глия. Они считаются специальными клеточными структурами, которые присутствуют в нервной системе. С ними поддерживается головной и спинной мозг, а также поступление необходимых компонентов.

Считается, что с гематоэнцефалической преградой отсутствует иммунная функция. Но при проникновении посторонних вещества в головной или спинной мозг клетка фагоцитирует аналог макрофага. Участок мозга от периферических тканей работает благодаря нейроглии.

Свойства

Эти структуры имеют много свойств, отличающихся от других структур. Связано это с уникальными условиями, которые создают нейроны. Глицоты могут делиться, но у них нет функции воспроизводства и передачи нервных импульсов.

Потенциал глий больше по сравнению с нейронами. Это связано с концентрацией катионов калия в цитоплазме. С влиянием раздражителей клетки могут отвечать медленноволновыми изменениями.

Иммунная деятельность мозга

В мозге происходят различные биохимические реакции, поэтому его нужно защищать от гуморального иммунитета. Необходимо учитывать, что нейрональная ткань является чуткой к заболеваниям, из-за чего восстановление нейронов происходит частично.

Получается, что образование в нервной системе участков, где образуется местная реакция, становится причиной уничтожения многих клеток. В периферии тела болезненные места заполняются новыми клетками. В мозге утерянный нейрон не восстанавливается. Благодаря нейроглии мозг не подвергается влиянию иммунитета.

Классификация

Глиальные клетки разделяются на 2 типа по морфологии и происхождению. Различают клетки микроглии и макроглии. Первый тип имеет много отростков, с помощью которых фагоцируются твердые компоненты.

Макроглия является производным эктодермы. Глиальные клетки разделяются по морфологии, и поэтому они бывают эпендимальными и астроцитарными, олигодендроцитами. У каждого вида есть свои особенности.

Функции клеток

Такие структуры осуществляет важные функции в организме. Астроглия включает много клеток, отростки которых располагаются на поверхности сосудов. В нее входит множество структур, обеспечивающих нормальную работу нервной системы. Астроглия применяется в качестве опоры для нейронов, нормализует репаративную деятельность, отделяет нервное волокно, выполняет функцию метаболизма.

Олигодендроглия представлена в виде клеток с отростками. Она располагается под корой мозга. С ее помощью выполняется миелинизация аксонов, метаболизм нейронов. Микроглия – это небольшие клетки. Они появляются из оболочек мозга, переходят в белое, а потом серое вещество. Все их функции являются важными для развития человека.

Особенности

Глиальные клетки могут изменяться в размерах, что является их особенностью. Причем это происходит ритмично с помощью фазы сокращения и расслабления. При набухании отростков не наблюдается их укорачивание.

Активность клеток происходит благодаря активным компонентам: серотонину и норадреналину. Физиологической особенностью является воздействие на межклеточное пространство. Клетки не имеют импульсную активность, как нервные, но у них есть заряд для создания мембранной активности. Ее изменения происходят медленно, что определяется деятельностью нервной системы.

Глиальные клетки могут распространяться, а происходит это за 30-60 мс. Развитие активности между ними происходит с помощью щелевых контактов. У этих контактов наблюдается низкое сопротивление, а также создание сферы для появления тока от одного участка к другому. Поскольку глия располагается с нейронами, то работа нервной системы влияет на электрическую деятельность в глиальных компонентах.

Патологические процессы

Из-за воздействия патологий клетки нейроглии подвергаются различным отрицательным последствиям.

Могут быть следующие изменения:

  • отеки и набухания;
  • гипертрофия и атрофия;
  • гиперплазия;
  • амебоидное перерождение;
  • гомогенезирующая метаморфоза.

Этот недуг, из-за которого меняется клеточное строение, бывает и в гистологическом исследовании, когда требуется выявить другие заболевания человека. Длительный период для обследования нервной системы нейроглиальные вещества считали второстепенными. Сейчас же они считаются главными компонентами нервной ткани. Патологии могут вызвать сложные заболевания.

Воздействие нейронов и глиальных клеток

У них есть общие свойства и строение, например, ядро, в которое входит генетическая информация. Обмен между ними происходит благодаря сигнальным молекулам, которые поступают через мембрану с помощью разнообразных механизмов. У них есть способность обработки сигналов.

Чтобы выполнять свои функции, у них есть отростки, которые действуют сообща. Нейроны могу осуществлять электрохимический сигнал аксону, из-за чего образуется действие. Между собой они связаны синапсами.

Некоторое время назад было выявлено, что глии, которые раньше применялись для нормализации нервной ткани, используются в передаче сигналов. Они входит в большую часть мозга, и поэтому все их функции необходимы для нормального развития человека.

Раньше полагали, что глии выполняли незначительные роли, но потом было определено, что они выполняют основные функции. Сигналы передаются волнами кальция, которые происходят медленно. Нейроглии контактируют с нейронами с помощью нейтромедиаторов. К тому же они считаются участком мозга, где образуются ГАМК и глутамат.

Именно поэтому нейроглия считается важным элементом, необходимым для полноценного развития человека. Их нормальное функционирование обеспечивает мыслительные и многие другие процессы мозга. В случае повреждения каких-либо участков требуется эффективное лечение, назначаемое врачом.


Нейроглия (от греч. neuron - жила, нерв и греч. glia - клей) - совокупность всех клеточных элементов нервной ткани, кроме нейронов. Клетки глии играют важную роль в обеспечении обменных процессов в нейронах. Это клетки в мозге, своими телами и отростками заполняющие пространства между нервными клетками - нейронами - и мозговыми капиллярами.

Каждый нейрон окружен несколькими клетками нейроглии, которая равномерно распределена по всему мозгу и составляет около 40% его объёма. Клетки нейроглии - число их в центральной нервной системе (ЦНС) млекопитающих около 140 млрд. - мельче нейронов в 3-4 раза и отличаются от них по морфологическим и биохимическим признакам. С возрастом количество нейронов в ЦНС уменьшается, а клеток нейроглии - увеличивается, т.к. последние, в отличие от нейронов, сохраняют способность к делению.

Функции нейроглии

Основные функции: создание между кровью и нейронами гемато-энцефалического барьера, необходимого как для защиты нейронов, так и главным образом для регуляции поступления веществ в ЦНС и их выведения в кровь; обеспечение реактивных свойств нервной ткани (образование рубцов после травмы, участие в реакциях воспаления, в образовании опухолей и др.). Различают астроглию, олигоглию, или олигодендроглию, и эпендиму, которые вместе составляют макроглию, а также микроглию, занимающую особое положение среди клеток нейроглии.

Астроглия (около 60% от общего числа клеток нейроглии) - звездообразные клетки с многочисленными тонкими отростками, оплетающими нейроны и стенки капилляров; основной элемент гемато-энцефалического барьера; регулирует водно-солевой обмен нервной ткани.

Олигоглия (около 25-30%) - более мелкие, округлые клетки с короткими отростками. Окружают тела нейронов и нервные проводники - аксоны. Отличаются высоким уровнем белкового и нуклеинового обмена; ответственны за транспорт веществ в нейроны. Участвуют в образовании миелиновых оболочек аксонов. Эпендима состоит из клеток цилиндрической формы, выстилающих желудочки головного мозга и центральный канал спинного мозга. Играет роль барьера между кровью и спинномозговой жидкостью; выполняет, по-видимому, и секреторную функцию нейроглии (главным образом олигоглия) участвует в происхождении медленной спонтанной биоэлектрической активности, к которой относят a-волны электроэнцефалограммы. Система "нейрон - нейроглия" - единый функционально-метаболический комплекс, отличающийся цикличностью работы, адаптивностью реакций, способностью переключения определённых обменных процессов преимущественно в нейроны или в нейроглии в зависимости от характера и интенсивности физиологических и патологических воздействий на ЦНС.

Глиальные клетки не являются возбудимыми, то есть в них не возникает ПД. Однако в них так же, как и в типичных возбудимых клетках, имеется концентрационный градиент ионов. И когда соседние с ними нейроны проявляют высокую активность, то мембранный потенциал глиальных клеток меняется. Происходит это в результате следующих морфофизиологических особенностей:

а) между глиальными и нервными клетками имеется очень небольшой ширины межклеточный промежуток (около 15 нм);

б) между отдельными глиальными клетками имеются плотные контакты;

в) мембрана глии легко проницаема для К.

Поэтому, когда в нейронах возникают ПД, в межклеточной жидкости повышается концентрация К (выходящий калиев ток обеспечивает реполяризацию мембраны). В результате К диффундирует внутрь глиальных клеток и их мембрана деполяризуется. Поэтому между деполяризованными и соседними глиальными клетками возникает электрический ток. Этот ток, в свою очередь, дополнительно повышает вход К в деполяризованные клетки.

В результате глиальные клетки существенно уменьшают внеклеточную концентрацию ионов калия около активных нейронов. Тем самым обеспечивается высокая «работоспособность» последних, так как активные нейроны не успевают закачивать калий внутрь клетки (Na, K-Hacoc за один «ход» выкачивает из клетки три иона натрия, а закачивает лишь два иона калия) и поэтому повышение его концентрации на внешней стороне мембраны может привести к снижению функциональной активности нейронов. Поглощаемый нейроглией К так же, как и медиаторы, затем, во время «отдыха», переводится из них в нейрон. Астроциты, выполняя указанные выше функции, облегчают нейронам выполнение их функций, то есть косвенно участвуют в регуляции функций организма. Причем этим не ограничивается роль астроцитов в функции нейронов, она, вероятно, более сложная. Дело в том, что на мембране астроцитов обнаружены рецепторы для большинства нейро-медиаторов. Хотя в настоящее время значение этих рецепторов еще не совсем понятно. Весьма существенно и то, что в астроцитах синтезируется ряд факторов, относимых к регуляторам роста. Ростовые факторы астроцитов участвуют в регуляции роста и развития нейронов.

Эта их функция особенно ярко проявляется в процессе становления ЦНС. во внутриутробном и раннем постнатальном периодах развития. Астроциты участвуют в иммунных механизмах мозга, защищая его от попадающих микроорганизмов. Олигодендроциты (их около 25-30% всех глиальных клеток) образуют миелиновую оболочку нейронов. На периферии эту функцию выполняют шванновские клетки. Кроме того, они могут поглощать микроорганизмы, то есть наряду с астроцитами участвуют в иммунных механизмах мозга. Эпендимные клетки Эпендимные клетки выстилают желудочки головного мозга, участвуя в процессах секреции спинномозговой жидкости (СМЖ) и в создании гематоэнцефалического барьера (ГЭБ). Микроглия составляет около 10% всех глиальных клеток. Микроглия, являясь частью ретикулоэндотелиальнои системы организма, участвует в фагоцитозе.



Но составляют 10% объема мозга. В зависимости от размеров и количества отростков выделяют астроциты , олигодендроциты , микроглиоциты .

Нейроны и глиальные клетки разделены узкой (20 нМ) межклеточной щелью. Эти щели соединяются между собой и образуют внеклеточное пространство мозга, заполненное интерстициальной жидкостью. За счет этого пространства нейроны и глионы обеспечиваются кислородом, питательными веществами.

Глиальные клетки ритмически увеличиваются и уменьшаются с частотой несколько колебаний в час. Это способствует току аксоплазмы по аксонам и продвижению межклеточной жидкости. Таким образом, глионы служат опорным аппаратом ЦНС, обеспечивают обменные процессы в нейронах, поглощают избыток нейромедиаторов и продукты их распада.

Предполагают, что глия участвует в формирование условных рефлексов и памяти.

В нервную ткань, кроме нейронов, входят и клетки — спутницы нейронов — нейроглия (рис. 1.20). Клетки нейроглии (астроциты, олигодендроциты, микроглия) заполняют все пространство между нейронами, защищая их от механических повреждений (опорная функция). Их примерно в 10 раз больше, чем нейронов, и, в отличие от них, глиальные клетки сохраняют способность к делению в течение всей жизни. Кроме того, они образуют миелиновые оболочки вокруг нервных волокон. В ходе этого процесса олигодендроцит (в ЦНС) или его разновидность — шванновская клетка (в периферической нервной системе) обхватывает участок нервного волокна. Затем она образует вырост в виде язычка, который закручивается вокруг волокна, формируя слои миелина (цитоплазма при этом выдавливается). Таким образом, слои миелина представляют собой, по сути, плотно спрессованную цитоплазматическую мембрану .

Нейроглия выполняет также защитную функцию. Она заключается, во-первых, в том, что глиальные клетки (в основном астроциты) вместе с эпителиальными клетками капилляров образуют барьер между кровью и нейронами, не пропуская к последним нежелательные (вредные) вещества. Такой барьер называют гематоэнцефалическим. Во-вторых, клетки микроглии выполняют в нервной системе функцию фагоцитов. Осуществляя трофическую функцию, нейроглия снабжает нейроны питательными веществами, управляет водно-солевым обменом и т. п.

Рудольф Вирхов. 1856. Нервный клей.

Типы нейроглии:

А - протоплазматические астроциты (в сером веществе),

Б - фиброзные астроциты (в белом веществе),

Г - олигодендроциты .

Нейроглия. Астроциты. Astrocytes:largest&most numerous

A silvered preparation of astrocytes, showing their many fine cytoplasmic processes. Notice their close association with the capillaries (the heavy black structures). Since astrocytes touch both cappillaries and neurons they are thought to play an intermediary role in the nutrition and metabolism of neurons.


Функции астроцитов:

Опора нервных клеток,

Восстановление нервных волокон при повреждении,

Изоляция и объединение нервных волокон,

Участие в процессах обмена веществ между капиллярами и нейронами,

Участие в процессах миграции нейронов в эбриогенезе.

Понравилась статья? Поделиться с друзьями: