§61. Уравнение Ван-дер-Ваальса. Ван-дер-ваальса уравнение Уравнение ван дер ваальса физический смысл поправок

При высоких температурах последний член в (5) можно опустить, и тогда изотерма будет гиперболой, асимптотами которой являются изобара Р = 0 и изохора V = b .

Для исследования изотерм при любых значениях Т умножим уравнение (4) на V 2 . После раскрытия скобок уравнение изотермы примет вид (6)

Это уравнение третьей степени по V , в которое давление Р входит в качестве параметра. Поскольку его коэффициенты вещественны, уравнение имеет либо один вещественный корень, либо три корня. Каждому корню на плоскости (V,P ) соответствует точка, в которой изобара Р = const пересекает изотерму. В первом случае, когда корень один и точка пересечения будет одна. Так будет, как мы видели, при любых давлениях, если температура достаточно высока. Изотерма имеет вид монотонно опускающейся кривой MN .

При более низких температурах и надлежащих значениях давления Р уравнение (6) имеет три корня V 1 , V 2 , V 3 . В таких случаях изобара P = const пересекает изотерму в трех точках L, C, G (рис. 1). Изотерма содержит волнообразный участок LBCAG. Она сначала монотонно опускается вниз (участок DB ), затем на участке BA монотонно поднимается вверх, а за точкой A снова монотонно опускается. При некоторой промежуточной температуре три корня V 1 , V 2 , V 3 становятся равными. Такая температура и соответствующая ей изотерма называются критическими . Критическая изотерма FKH всюду монотонно опускается вниз, за исключением одной точки K, являющейся точкой перегиба изотермы. В ней касательная к изотерме горизонтальна. Точка K называется критической точкой. Соответствующие ей давление P k , объем V k и температура T k называются также критическими. Говорят, что вещество находится в критическом состоянии , если его объем и давление (а следовательно, и температура) равны критическим.

Для нахождения критических параметров P k , V k , T k учтем, что в критической точке уравнение (6) переходит в уравнение (7).

Поскольку в этом случае все три корня совпадают и равны V k , уравнение должно приводиться к виду (8).

Возводя в куб и сравнивая коэффициенты уравнений (7) и (8), получим три уравнения .

Решая их, найдем выражения для параметров критического состояния вещества: (9).

К тем же результатам можно прийти, заметив, что критическая точка К является точкой перегиба изотермы, касательная в которой горизонтальна, а поэтому в точке К должны соблюдаться соотношения .



Решая эти уравнения совместно с уравнением изотермы (4) придем к формулам (9).

Не все состояния вещества, совместимые с уравнением Ван-дер-Ваальса, могут быть реализованы в действительности. Для этого необходимо еще, чтобы они были термодинамически устойчивы. Одно из необходимых условий термодинамической устойчивости физически однородного вещества состоит в выполнении неравенства . Физически оно означает, что при изотермическом увеличении давления объем тела должен уменьшаться. Иными словами, при возрастании V все изотермы должны монотонно опускаться. Между тем, ниже критической температуры на изотермах Ван-дер-Ваальса имеются поднимающиеся участки типа BCA (рис. 1). Точки, лежащие на таких участках, соответствуют неустойчивым состояниям вещества, которые практически реализованы быть не могут. При переходе к практическим изотермам эти участки должны быть выброшены.

Таким образом, реальная изотерма распадается на две ветви EGA и BLD , отделенные друг от друга. Естественно предположить, что этим двум ветвям соответствуют различные агрегатные состояния вещества. Ветвь EA характеризуется относительно большими значениями объема или малыми значениями плотности, она соответствует газообразному состоянию вещества. Напротив, ветвь BD характеризуется относительно малыми объемами, а следовательно, большими плотностями, она соответствует жидкому состоянию вещества . Мы распространяем, следовательно, уравнение Ван-дер-Ваальса и на область жидкого состояния. Таким путем удается получить удовлетворительное качественное описание явления перехода газа в жидкость и обратно.

Возьмем достаточно разреженный газ при температуре ниже критической. Исходное состояние его на диаграмме PV изображается точкой E (рис. 1). Будем сжимать газ квазистатически, поддерживая температуру T постоянной. Тогда точка, изображающая состояние газа, будет перемещаться по изотерме вверх. Можно было думать, что она достигает крайнего положения A , где изотерма обрывается. В действительности, однако, начиная с некоторой точки G , давление в системе перестает повышаться, и она распадается на две физически однородные части, или фазы : газообразную и жидкую.

Процесс изотермического сжатия такой двухфазной системы изображается участком GL горизонтальной прямой. При этом во время сжатия плотности жидкости и газа остаются неизменными и равными их значениям в точках L и G соответственно. По мере сжатия количество вещества в газообразной фазе непрерывно уменьшается, а в жидкой фазе - увеличивается, пока не будет достигнута точка L, в которой все вещество перейдет в жидкое состояние.

Эндрюс систематически исследовал ход изотерм углекислоты (СО 2) при различных температурах и на основе этих исследований ввел понятие критической температуры. Углекислота им была выбрана сознательно, так как она обладает критической температурой (31 0 С), лишь незначительно превышающей комнатную, и сравнительно невысоким критическим давлением (72,9 атм). Оказалось, что при температуре выше 31 0 С изотермы углекислоты монотонно опускаются вниз, т.е. имеют гиперболический вид. Ниже этой температуры на изотермах углекислоты появляются горизонтальные участки, на которых изотермическое сжатие газа приводит к его конденсации, но не к увеличению давления. Таким путем было установлено, что сжатием газ можно превратить в жидкость только тогда, когда его температура ниже критической.

При специальных условиях могут быть реализованы состояния, изображаемые участками изотермы GA и BL. Эти состояния называются метастабильными. Участок GA изображает так называемый пересыщенный пар , участок BL - перегретую жидкость . Обе фазы обладают ограниченной устойчивостью. Каждая из них может существовать до тех пор, пока она не граничит с другой более устойчивой фазой. Например, пересыщенный пар переходит в насыщенный, если в него ввести капли жидкости. Перегретая жидкость закипает, если в нее попадают пузырьки воздуха или пара.

Уравнение состояния идеального газа достаточно хорошо изображает поведение реальных газов при высоких температурах и низких давлениях. Однако когда температура и давление таковы, что газ близок к конденсации, то наблюдаются значительные отклонения от законов идеального газа.

Среди ряда уравнений состояния, предложенных для изображения поведения реальных газов, особенно интересно уравнение Ван-дер-Ваальса вследствие его простоты и вследствие того, что оно удовлетворительно описывает поведение многих веществ в широком интервале температур и давлений.

Ван-дер-Ваальс вывел свое уравнение из соображений, основанных на кинетической теории, учитывая, в качестве первого приближения величину молекул и силы взаимодействия между ними. Его уравнение состояния (написанное для одного моля вещества) таково:

где константы, зависящие от особенностей данного вещества. При уравнение (99) превращается в уравнение идеального газа. Член описывает эффект, связанный с конечной величиной молекул, а член изображает эффект молекулярных сил взаимодействия.

На рис. 14 показаны некоторые изотермы, вычисленные согласно уравнению Ван-дер-Ваальса. Сравнивая эти изотермы с изотермами рис. 13, мы видим, что их очертания имеют много сходства. В обоих случаях на одной изотерме есть точка перегиба Изотерма, содержащая точку перегиба - критическая изотерма, а сама точка перегиба - критическая точка. Изотермы при температуре выше критической в обоих случаях ведут себя похоже. Однако изотермы ниже критической температуры существенно различаются. Изотермы Ван-дер-Ваальса являются непрерывными кривыми с минимумом и максимумом, тогда как изотермы на рис. 13

имеют две «угловые» точки и являются горизонтальными в той области, где изотермы Ван-дер-Ваальса содержат максимум и минимум.

Причина качественно различного поведения двух семейств изотерм в районе, обозначенном на рис. 13, заключается в том, что точки горизонтального отрезка изотерм на рис. 13 не соответствуют гомогенному состоянию, так как на этих участках вещество разделилось на жидкую и парообразную части.

Если мы изотермически сжимаем ненасыщенный пар до тех пор, пока не достигнем давления насыщения, а затем по-прежнему продолжаем уменьшать объем, то конденсация части пара не сопровождается дальнейшим увеличением давления, что соответствует горизонтальным изотермам рис. 13. Однако если очень осторожно сжимать пар и сохранять его свободным от частичек пыли, то можно достигнуть давления значительно более высокого, чем давление насыщения в момент наступления конденсации. Когда осуществляется подобная ситуация, пар оказывается перегретым. Но перегретое состояние неустойчиво (лабильно). В результате какого-либо даже легкого нарушения состояния может произойти конденсация, причем система перейдет в устойчивое (стабильное) состояние, характеризуемое наличием жидкой и парообразной частей.

Неустойчивые состояния важны для нашего обсуждения, так как они иллюстрируют возможность существования гомогенных состояний в той области значений параметров, которые характерны для насыщенного пара над жидкостью. Предположим, что эти неустойчивые состояния изображены участком изотермы Ван-дер-Ваальса на рис. 15. Горизонтальный участок непрерывной изотермы показывает устойчивые состояния жидкость - пар. Если бы можно было осуществить все нёустойчивые состояния на изотерме Ван-дер-Ваальса, то они походили бы при непрерывном изотермическом процессе от пара, показанного участком изотермы, до жидкости, изображенной участком Если известна изотерма Ван-дер-Ваальса, то можно определить, каково давление насыщенного пара при заданной температуре, или, на геометрическом языке, как высоко над осью следует начертить горизонтальный отрезок который соответствует состоянию жидкость - пар. Докажем, что это расстояние должно быть таким, чтобы площади и были равны. Для доказательства покажем сначала, что работа, совершаемая

системой во время обратимого изотермического цикла, всегда равна нулю. Из уравнения (16) следует, что работа, совершаемая во время цикла, равна теплоте, поглощаемой системой. Но для обратимого цикла остается в силе равенство (66), а так как наш цикл изотермич ескии, то можно вынести из-под знака интеграла в (66). Уравнение (66) показывает, что вся поглощаемая теплота и, следовательно, вся выполняемая во время цикла работа равпы нулю.

Теперь рассмотрим обратимый изотермический цикл (рис. 15).

Работа, совершаемая во время цикла, должна обратиться в нуль.

Участок проходится по ходу часовой стрелки, поэтому соответствующая площадь положительна, а участок против часовой стрелки, и соответствующая площадь отрицательна. Поскольку вся площадь цикла равна нулю, то абсолютные величины площадей двух циклов и должны быть равны, что и требовалось доказать.

Могло бы возникнуть следующее возражение против приведенного выше доказательства: так как площадь изотермического цикла очевидно, не равна нулю, то не верно, что работа, совершаемая во время обратимого изотермического цикла, всегда равна нулю. Ответ на это возражение таков: цикл не является обратимым.

Чтобы убедиться в этом, заметим, что точка на диаграмме изображает два различных состояния, в зависимости от того, рассматривается ли она как точка изотермы Ван-дер-Ваальса или как точка на изотерме жидкость - пар. Объем и давление, изображенные точкой одинаковы в обоих случаях, но на изотерме Ван-дер-Ваальса D изображает неустойчивое гомогенное (однородное) состояние, а на изотерме жидкость - пар устойчивое негомогенное (неоднородное) состояние, образованное из жидкой и газообразной частей. Когда мы совершаем цикл то проходим от состояния на изотерме Ван-дер-Ваальса к состоянию на изотерме жидкость-пар. Так как состояние на изотерме жидкость - пар более устойчиво, чем на изотерме Ван-дер-Ваальса, то этот путь необратим - его нельзя было бы самопроизвольно осуществить в обратном направлении. Таким образом, весь цикл является необратимым, и поэтому площадь цикла не должна равняться нулю.

Критические значения вещества могут быть выражены через константы которые входят в уравнение Ван-дер-Ваальса.

Уравнение Ван-дер-Ваальса (99), когда и заданы, является уравнением третьей степени относительно Поэтому, вообще говоря, существует три различных корня V (при фиксированных значениях Однако критическая изотерма имеет горизонтальную точку перегиба при т. е. при кривая третьего порядка - критическая изотерма - касается горизонтальной линии Отсюда следует, что кубическое уравнение для V, которое получится, если положить в имеет тройной корень Это уравнение можно записать в виде

Так как тройной корень приведенного уравнения, то левая часть должна иметь форму Сравнивая, находим

Решив эти три уравнения для получим

Эти уравнения выражают критические значения через

Целесообразно отметить, что если использовать как единицы объема, давления и температуры, то уравнение Ван-дер-Ваальса имеет одинаковую форму для всех веществ.

и используя равенства (100), из (99) получим:

Так как это уравнение содеридат только численные константы, то оно одинаково для всех веществ. Состояния различных веществ, которые определяются теми же величинами называются соответственными состояниями, и (101) часто называется «уравнением Ван-дер-Ваальса для соответственных состояний».

В разделе 14 было показано, что если вещество подчиняется уравнению состояния идеального газа то можно вывести термодинамически, что его энергия определяется лишь температурой и не зависит от объема. Этот результат верен только для

Уравнение Клапейрона - Менделеева (см. § 40) описывает поведение идеального газа, молекулы которого можно рассматривать как материальные точки, не взаимодействующие друг с другом (см. § 41). Молекулы реального газа имеют, как мы знаем, некоторый, хотя и очень малый, размер и связаны между собой силами сцепления, правда, тоже малыми. Однако при низких температурах или при высоких давлениях, когда молекулы газа находятся близко друг от друга, пренебрегать их размерами и силами сцепления уже недопустимо. В этих случаях уравнение Клапейрона - Менделеева, т. е. уравнение состояния идеального газа, оказывается уже весьма неточным. Чтобы получить уравнение состояния реального газа, голландский физик Ван-дер-Ваальс в 1873 г. ввел в уравнение Клапейрона - Менделеева поправки на размер молекул и на действие сил сцепления между ними. Это было

сделано следующим образом. В уравнении Клапейрона - Менделеева для моля газа

где объем газа, или, что то же, объем сосуда, предоставленный для движения молекул. У реального газа часть этого объема занимают сами молекулы. Поэтому фактический свободный объем, в котором могут двигаться молекулы реального газа, будет меньше и равен Подставляя это значение вместо в формулу (1), получим

Объем занимаемый самими молекулами, больше суммы собственных объемов этих молекул, так как даже при самой плотной упаковке между молекулами остались бы «бесполезные» зазоры, недоступные для движения молекул (рис. 121). В действительности же эти зазоры будут еще большими, так как силы отталкивания не допустят такой плотной упаковки молекул. Расчеты показывают, что объем, занимаемый самими молекулами моля газа, приблизительно равен учетверенному собственному объему этих молекул:

где - собственный объем молекулы, постоянная Авогадро.

Давление в формуле (1), производимое на идеальный газ стенками сосуда, является внешним. Действие сил притяжения между молекулами реального газа вызывает добавочное сжатие газа, создавая тем самым добавочное внутреннее давление раналогичное внутреннему давлению жидкости (см. § 59). Поэтому фактическое давление реального газа будет больше и равно Подставляя это значение вместо в формулу (2), получим

Нетрудно установить, что внутреннее давление должно быть приблизительно пропорционально квадрату плотности газа. Действительно, разделим газ воображаемой плоскостью на две части (рис. 122) и рассмотрим слои газа, прилежащие к этой плоскости. Очевидно, что сила взаимного притяжения этих слоев пропорциональна числам молекул в каждом их них, т. е. пропорциональна квадрату числа молекул газа. Но число молекул пропорционально плотности газа Поэтому сила притяжения слоев, а следовательно, и внутреннее давление пропорциональны квадрату плотности: Так как плотность обратно пропорциональна объему, то внутреннее давление обратно пропорционально квадрату объема:

где а - коэффициент пропорциональности. Подставляя выражение в формулу (3), получим

Это и есть уравнение состояния реального газа или уравнение Ван-дер-Ваальса для моля газа. Преобразуя это уравнение так, как это было сделано с уравнением Клапейрона - Менделеева (см. § 40), получим уравнение Ван-дер-Ваальса для любой массы газа

где V - объем массы газа, молярная масса газа.

При малых давлениях и высоких температурах объем становится большим; поэтому и т. е. поправки в уравнении Ван-дер-Ваальса становятся пренебрежимо малыми и оно превращается в уравнение Клапейрона - Менделеева.

Величины являются почти постоянными для каждого газа. Например, для азота Определяются они экспериментально; надо написать уравнение Ван-дер-Ваальса для двух известных из опыта состояний газа и решить систему двух уравнений относительно неизвестных

Проведем некоторый анализ уравнения Ван-дер-Ваальса. С этой целью прежде всего составим таблицы зависимости давления от объема газа при постоянной температуре для нескольких значений температуры Результаты таких расчетов представлены графически на рис. 123. Полученные кривые - изотермы Ван-дер-Ваальса - оказываются довольно своеобразными: при низких температурах они имеют волнообразные участки (максимумы и минимумы), при некоторой температуре на изотерме имеется только точка перегиба К, при высоких температурах изотермы Ван-дер-Ваальса похожи на изотермы идеального газа (Бойля-Мариотта или Клапейрона-Менделеева).

С математической точки зрения такой характер изотерм объясняется очень просто. Если привести уравнение Ван-дер-Ваальса к нормальному виду, то оно окажется кубическим уравнением относительно объема

Кубическое уравнение может иметь либо три вещественных корня, либо один вещественный корень и два мнимых. Очевидно, что первому случаю соответствуют изотермы при низких температурах (три значения объема газа и отвечают одному значению давления а второму случаю - изотермы при высоких температурах (одно значение объема отвечает одному значению давления

Как уже указывалось в § 60, для реальных газов необходимо учитывать размеры молекул и их взаимодействие друг с другом, поэтому модель идеального газа и уравнение Клапейрона-Менделеева (42.4) pV m =RT (для моля газа), описывающее идеальный газ, для реальных газов непригодны.

Учитывая собственный объем молекул и сил межмолекулярного взаимодействия, голландский физик И. Ван-дер-Ваальса (1837-1923) вывел уравнения состояния реального газа. Ван-дер-Ваальсом в уравнение Клапейрона-Менделеева введены две поправки.

1. Учет собственного объема молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет не V m , a V m - b , где b - объем, занимаемый самими молекулами. Объем b равен учетверенному собственному объему молекул. Если, например, в сосуде находятся две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметра d молекулы. Это означает, что для центров обеих молекул оказывается недоступным сферический объем радиуса d , т. е. объем, равный восьми объемам молекулы, а в расчете на одну молекулу - учетверенный объем молекулы.

2. Учет притяжения молекул. Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату молярного объема, т. е.

p" = a/V 2 m , (61.1)

где а- постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного притяжения, V m - молярный объем.

Вводя эти поправки, получим уравнение Ван-дер-Ваальса для моля газа (уравнение состояния реальных газов):

(p + a / V 2 m )(V m - b )= RT . (61.2)

Для произвольного количества вещества v газа (v =т/М) с учетом того, что V = vV m , уравнение Ван-дер-Ваальса примет вид

где поправки а и b - постоянные для каждого газа величины, определяемые опытным путем (записываются уравнения Ван-дер-Ваальса для двух известных из опыта состояний газа и решаются относительно а и b ).

При выводе уравнения Ван-дер-Ваальса сделан целый ряд упрощений, поэтому оно также весьма приближенное, хотя и лучше (особенно для несильно сжатых газов) согласуется с опытом, чем уравнение состояния идеального газа.

Уравнение Ван-дер-Ваальса не единственное уравнение, описывающее реальные газы. Существуют и другие уравнения, некоторые из них даже точнее описывают реальные газы, но не рассматриваются из-за их сложности.

§ 62. Изотермы Ван-дер-Ваальса и их анализ

Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ваальса - кривые зависимости р от V m при заданных Т, определяемые уравнением Ван-дер-Ваальса (61.2) для моля газа. Эти кривые (рассматриваются для четырех различных температур; рис. 89) имеют довольно своеобразный характер. При высоких температурах (T>T к) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением ее формы, оставаясь монотонно спадающей кривой. При некоторой температуре Т к на изотерме имеется лишь одна точка перегиба К. Эта изотерма называется критической, соответствующая ей температура T к - критической температурой. Критическая изотерма имеет лишь одну точку перегиба К, называемую критической точкой; в этой точке касательная к ней параллельна оси абсцисс. Соответствующие этой точке объем V к и давление р к называются также критическими. Состояние с критическими параметрами (р к, V к , Т к ) называется критическим состоянием. При низких температурах (Т<Т к ) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.

Для пояснения характера изотерм преобразуем уравнение Ван-дер-Ваальса (61.2) к виду

pV 3 m -(RT+pb) V 2 m +aV m -ab=0.

Уравнение (62.1) при заданных р и Т является уравнением третьей степени относительно V m ; следовательно, оно может иметь либо три вещественных корня, либо один вещественный и два мнимых, причем физический смысл имеют лишь вещественные положительные корни. Поэтому первому случаю соответствуют изотермы при низких температурах (три значения объема газа V 1 , V 2 и V 3 отвечают (символ «т» для простоты опускаем) одному значению давления р 1 ), второму случаю- изотермы при высоких температурах.

Рассматривая различные участки изотермы при Т<Т к (рис.90), видим, что на участках 1 -3 и 5-7 при уменьшении объема V m давление р возрастает, что естественно. На участке 3-5 сжатие вещества приводит к уменьшению давления; практика же показывает, что такие состояния в природе не осуществляются. Наличие участка 3-5 означает, что при постепенном изменении объема вещество не может оставаться все время в виде однородной среды; в некоторый момент должно наступить скачкообразное изменение состояния и распад вещества на две фазы. Таким образом, истинная изотерма будет иметь вид ломаной линии 7-6-2-1. Часть 7-6 отвечает газообразному состоянию, а часть 2-1 - жидкому. В состояниях, соответствующих горизонталь-

ному участку изотермы 6-2, наблюдается равновесие жидкой и газообразной фаз вещества. Вещество в газообразном состоянии при температуре ниже критической называется паром, а пар, находящийся в равновесии со своей жидкостью, называется насыщенным.

Данные выводы, следующие из анализа уравнения Ван-дер-Ваальса, были подтверждены опытами ирландского ученого Т. Эндрюса (1813-1885), изучавшего изотермическое сжатие углекислого газа. Отличие экспериментальных (Эндрюс) и теоретических (Ван-дер-Ваальс) изотерм заключается в том, что превращению газа в жидкость в первом случае соответствуют горизонтальные участки, а во втором - волнообразные.

Для нахождения критических параметров подставим их значения в уравнение (62.1) и запишем

p к V 3 -(RT к +p к b)V 2 +aV-ab= 0

(символ «т» для простоты опускаем). Поскольку в критической точке все три корня совпадают и равны V к , уравнение приводится к виду

p к (V - V к ) 3 = 0,

p к V 3 -3 p к V к V 2 +3 p к V 2 к V - p к V к = 0.

Так как уравнения (62.2) и (62.3) тождественны, то в них должны быть равны и коэффициенты при неизвестных соответствующих степеней. Поэтому можно записать

ркV 3 к =ab, 3р к V 2 к =а, 3 p к V к = RT к + p к b . Решая полученные уравнения, найдем: V к = 3b, р к = а/(27b 2), T к =8 a /(27 Rb }.

Если через крайние точки горизонтальных участков семейства изотерм провести линию, то получится колоколообразная кривая (рис. 91), ограничивающая область двухфазных состояний вещества. Эта кривая и критическая изотерма делят

диаграмму р, V m под изотермой на три области: под колоколообразной кривой располагается область двухфазных состояний (жидкость и насыщенный пар), слева от нее находится область жидкого состояния, а справа - область пара. Пар отличается от остальных газообразных состояний тем, что при изотермическом сжатии претерпевает процесс сжижения. Газ же при температуре выше критической не может быть превращен в жидкость ни при каком давлении.

Сравнивая изотерму Ван-дер-Ваальса с изотермой Эндрюса (верхняя кривая на рис. 92), видим, что последняя имеет прямолинейный участок 2-6, соответствующий двухфазным состояниям вещества. Правда, при некоторых условиях могут быть реализованы состояния, изображаемые участками ван-дер-ваальсовой изотермы 5-6 и 2-3. Эти неустойчивые состояния называются метастабильными. Участок 2-3 изображает перегретую жидкость, 5-6 - пересыщенный пар. Обе фазы ограниченно устойчивы

При достаточно низких температурах изотерма пересекает ось V m , переходя в область отрицательных давлений (нижняя кривая на рис. 92). Вещество под отрицательным давлением находится в состоянии растяжения. При некоторых условиях такие состояния также реализуются. Участок 8 -9 на нижней изотерме соответствует перегретой жидкости, участок 9 - 10 - растянутой жидкости.

Понравилась статья? Поделиться с друзьями: