Отходы литейного производства. Технологическая схема процесса механической регенерации. Смотреть что такое "отходы литейного производства" в других словарях

В литейном производстве исполь-зуют отходы собственного производ-ства (оборотные ресурсы) и отходы, поступающие извне (товарные ресур-сы). При подготовке отходов выпол-няют следующие операции: сортиров-ку, сепарацию, разделку, пакетиро-вание, обезвоживание, обезжиривание, сушку и брикетирование. Для пере-плава отходов используют индукцион-ные печи. Технология переплава зави-сит от характеристик отходов — марки сплава, крупности кусков и т. д. Особое внимание необходимо уделять переплавке стружки.

АЛЮМИНИЕВЫЕ И МАГНИЕВЫЕ СПЛАВЫ.

Самую большую группу алюминиевых отходов составляет стружка. Ее мас-совая доля в общем количестве отхо-дов достигает 40%. К первой группе отходов алюминия относят лом и от-ходы нелегированного алюминия;
во вторую группу — лом и отходы дефор-мируемых сплавов с низким содержа-нием магния [до 0,8% (маc. доля)];
в третью — лом и отходы деформируе-мых сплавов с повышенным (до 1,8%) содержанием магния;
в четвертую — отходы литейных сплавов с низким (до 1,5%) содержанием меди;
в пя-тую — литейные сплавы с высоким содержанием меди;
в шестую — де-формируемые сплавы с содержанием магния до 6,8 %;
в седьмую — с со-держанием магния до 13%;
в вось-мую — деформируемые сплавы с со-держанием цинка до 7,0%;
в девя-тую — литейные сплавы с содержанием цинка до 12 %;
в десятую — осталь-ные сплавы.
Для переплавки крупных кусковых отходов используют индукционные ти-гельные и канальные электропечи.
Размеры кусков шихты при плавке в индукционных тигельных печах не должны быть менее 8—10 см, так как именно при этих размерах кусков шихты происходит максимальное выде-ление мощности, обусловленное глу-биной проникновения тока. Поэтому не рекомендуется проводить плавку в таких печах с использованием мел-кой шихты и стружки, особенно при плавке с твердой завалкой. Крупные отходы собственного производства име-ют обычно повышенное электросопро-тивление по сравнению с исходными первичными металлами, что опреде-ляет порядок загрузки шихты и после-довательность введения компонентов в процессе плавки. Сначала загружают крупные кусковые отходы собственно-го производства, а затем (по мере появ-ления жидкой ванны) — остальные компоненты. При работе с ограничен-ной номенклатурой сплавов наиболее экономична и производительна плавка с переходящей жидкой ванной — в этом случае возможно использование мелкой шихты и стружки.
В индукционных канальных печах переплавляют отходы первого сорта — бракованные детали, слитки, крупные полуфабрикаты. Отходы второго сорта (стружку, сплесы) предварительно пе-реплавляют в индукционных тигель-ных или топливных печах с разливкой в чушки. Эти операции выполняют в целях предотвращения интенсивного зарастания каналов оксидами и ухуд-шения работы печи. Особенно отрица-тельно сказывается на зарастании ка-налов повышенное содержание в от-ходах кремния, магния и железа. Расход электроэнергии при плавке плотного лома и отходов составляет 600—650 кВт-ч/т.
Стружку алюминиевых сплавов либо переплавляют с последующей разлив-кой в чушки, либо добавляют непо-средственно в шихту при приготовле-нии рабочего сплава.
При подшихтовке базового сплава стружку вводят в расплав либо брике-тами, либо россыпью. Брикетирование повышает выход металла на 1,0%, однако более экономично введение стружки россыпью. Введение стружки в сплав более 5,0 % нецелесообразно.
Переплав стружки с разливкой в чушки осуществляют в индукционных печах с «болотом» при минимальном перегреве сплава выше температуры ликвидуса на 30—40 °С. В течение всего процесса плавки в ванну ма-лыми порциями подают флюс, чаще всего следующего химического соста-ва, % (масс. доля): КСl -47, NaCl-30, NO3AlF6 -23. Расход флюса составляет 2,0—2,5 % массы шихты. При плавке окисленной стружки образу-ется большое количество сухих шла-ков, происходит зарастание тигля и снижается выделяемая активная мощ-ность. Нарастание шлака толщиной 2,0—3,0 см приводит к снижению активной мощности на 10,0—15,0 %, Количество используемой в шихте предварительно переплавляемой струж-ки может быть более высоким, чем при непосредственном добавлении стружки в сплав.

ТУГОПЛАВКИЕ СПЛАВЫ.

Для пере-плавки отходов тугоплавких сплавов чаще всего используют электронно-лучевые и дуговые печи мощностью до 600 кВт. Наиболее производительна технология непрерывного переплава с переливом, когда плавка и рафини-рование отделены от кристаллизации сплава, а печь содержит четыре-пять электронных пушек различной мощ-ности, распределенных по водоохлаждаемому поду, изложнице и кристал-лизатору. При переплаве титана жид-кая ванна перегревается на 150— 200 °С выше температуры ликвидус; сливной носок изложницы обогрева-ется; форма может быть неподвижной или вращающейся вокруг своей оси с частотой до 500 об/мин. Плавка происходит при остаточном давлении 1,3-10~2 Па. Процесс плавки начинают с наплавления гарнисажа, после чего вводят лом и расходуемый электрод.
При плавке в дуговых печах исполь-зуют электроды двух типов: нерасходуемые и расходуемые. При исполь-зовании нерасходуемого электрода шихту Загружают в тигель, чаще всего медный водоохлаждаемый или гра-фитовый; в качестве электрода исполь-зуют графит, вольфрам или другие тугоплавкие металлы.
При заданной мощности плавка раз-личных металлов отличается скоростью плавления и рабочим вакуумом. Плав-ка делится на два периода — нагрев электрода с тиглем и собственно плав-ление. Масса сливаемого металла на 15—20 % меньше массы загруженного в связи с образованием гарнисажа. Угар основных компонентов состав-ляет 4,0—6,0 % (мае. доля).

НИКЕЛЕВЫЕ, МЕДНЫЕ И МЕДНО-НИКЕЛЕВЫЕ СПЛАВЫ.

Для получения ферро-никеля переплав вторичного сырья никелевых сплавов осуществляют в ду-говых электропечах. В качестве флюса используют кварц в количестве 5— 6 % массы шихты. По мере расплавления шихта оседает, поэтому необ-ходимо проводить догрузку печи, ино-гда до 10 раз. Образующиеся шлаки имеют повышенное содержание ни-келя и других ценных металлов (воль-фрама или молибдена). В дальнейшем эти шлаки перерабатывают вместе с окисленной никелевой рудой. Выход ферроникеля составляет около 60 % массы твердой шихты.
Для переработки металлоотходов жа-ропрочных сплавов проводят окислительно-сульфидирующую плавку или экстрагирующую плавку в магнии. В последнем случае магний экстраги-рует никель, практически не извлекая вольфрам, железо и молибден.
При переработке отходов меди и ее сплавов чаще всего получают бронзы и латуни. Выплавку оловянных бронз осуществляют в отражательных печах; латуней -— в индукционных. Плавку ведут в переходящей ванне, объем которой составляет 35—45 % объема печи. При плавке латуни в первую очередь загружают стружку и флюс. Выход годного металла составляет 23—25 %, выход шлаков — 3—5 % массы шихты; расход электроэнергии изменяется от 300 до 370 кВт-ч/т.
При выплавке оловянной бронзы в первую очередь загружают также мелкую шихту — стружку, выштамповки, сетки; в последнюю очередь — крупногабаритный лом и кусковые отходы. Температура металла перед разливкой 1100—1150 °С. Извлечение металла в готовую продукцию соста-вляет 93—94,5%.
Безоловянные бронзы переплавляют в поворотных отражательных или ин-дукционных печах. Для предохране-ния от окисления используют древесный уголь или криолит, плавиковый шпат и кальцинированную соду. Рас-ход флюса составляет 2—4% массы шихты.
В первую очередь в печь за-гружают флюс и легирующие компо-ненты; в последнюю очередь — отходы бронзы и меди.
Большинство вредных примесей в медных сплавах удаляют продувкой ванны воздухом, паром или введением медной окалины. В качестве раскисли-теля используют фосфор и литий. Раскисление фосфором латуней не применяют из-за высокого сродства цинка к кислороду. Дегазация мед-ных сплавов сводится к удалению из расплава водорода; осуществляется продувкой инертными газами.
Для плавки медноникелевых спла-вов используют индукционные каналь-ные печи с кислой футеровкой. Струж-ку и другие мелкие отходы добавлять в шихту без предварительного пере-плава не рекомендуется. Склонность этих сплавов к науглероживанию ис-ключает использование древесного уг-ля и других углесодержащих мате-риалов.

ЦИНКОВЫЕ И ЛЕГКОПЛАВКИЕ СПЛАВЫ.

Переплавку отходов цинковых спла-вов (литников, стружки, сплесов) про-водят в отражательных печах. Сплавы от неметаллических примесей очищают рафинированием хлоридами, продув-кой инертными газами и фильтрова-нием. При рафинировании хлоридами в расплав с помощью колокольчика при 450—470 °С вводят 0,1—0,2% (мае. доля) хлористого аммония или 0,3—0,4 % (мае. доля) гексахлорэтана; в этом же случае рафинирование можно выполнить перемешиванием расплава до прекращения выделения продуктов реакции. Затем производят более глубокую очистку расплава филь-трованием через мелкозернистые филь-тры из магнезита, сплава фторидов магния и кальция, хлорида натрия. Температура фильтрующего слоя 500 °С, его высота 70—100 мм, размер зерен 2—3 мм.
Переплав отходов оловянных и свин-цовых сплавов ведут под слоем дре-весного угля в чугунных тиглях печей с любым нагревом. Полученный ме-талл рафинируют от неметаллических примесей хлористым аммонием (доба-вляют 0,1—0,5%) и фильтруют его через зернистые фильтры.
Переплав отходов кадмия осуще-ствляют в чугунных или графито-шамотных тиглях под слоем древесного угля. Для уменьшения, окисляемости и потерь кадмия вводят магний . Слой древесного угля меняют несколько раз.
Необходимо соблюдать те же меры безопасности, что и при плавке спла-вов кадмия.

6. 1. 2. Переработка дисперсных твердых отходов

Большинство стадий технологических процессов металлургии черных металлов сопровождается образованием твердых дисперсных отходов, представляющие собой, в основном, остатки рудного и нерудного минерального сырья и продуктов его переработки. По химическому составу они подразделяются на металлические и неметаллические (в основном представленные кремнезем, глинозем, кальцит, доломит, с содержанием железа не более 10 – 15 % массы ). Данные отходы относятся к наименее утилизируемой группе твердых отходов и зачастую складируются в отвалах и шламохранилищах.

Локализация твердых дисперсных отходов, особенно металлосодержащих, на объектах складирования вызывает комплексное загрязнение природной среды по всем ее компонентам вследствие рассеивания высокодисперсных частиц ветрами, миграции соединений тяжелых металлов в почвенном слое и грунтовых водах.

В то же время данные отходы относятся к вторичным материальным ресурсам и по своему химическому составу могут быть использованы как в самом металлургическом производстве, так и в других отраслях хозяйства.

В результате анализа системы управления дисперсными отходами на базовом металлургическом комбинате ОАО «Северсталь» было выяснено, что основные накопления металлосодержащих шламов наблюдаются в системе газоочисток конвертерного, доменного, производств и теплосилового хозяйства, травильных отделений прокатного производства, флотационного обогащения углей коксохимического производства и гидрошлакоудаления .

Типовая схема потоков твердых дисперсных отходов замкнутого производства в общем виде представлена на рис. 3.

Практический интерес имеют шлам систем газоочисток, шлам железного купороса травильных отделений прокатного производства, шлам разливочных машин доменного производства, отходы флотационного обогащения у, предложенным ОАО «Северсталь» (г. Череповец), предусматривает использование всех компонентов и не сопровождается образованием вторичных ресурсов .

Складируемые металлосодержащие дисперсные отходы металлургических производств, являющиеся источником ингредиентного и параметрического загрязнения природных систем, представляют собой невостребованные материальные ресурсы и могут рассматриваться как техногенное сырье. Подобного рода технологии позволяют сократить объемы накопления отходов путем утилизации конвертерного шлама, получением металлизированного продукта, производство железооксидных пигментов на основе техногенного шлама, комплексного использование отходов для получения портландцемента.

6. 1. 3. Утилизация шлама железного купороса

Среди опасных металлосодержащих отходов существуют шламы, содержащие ценные, дефицитные и дорогостоящие компоненты невозобновимых рудных сырьевых ресурсов. В связи с этим разработка и практическая реализация ресурсосберегающих технологий, нацеленных на утилизацию отходов этих производств, является приоритетной задачей в отечественной и мировой практике. Однако в ряде случаев внедрение технологий, эффективных с точки зрения ресурсосбережения, вызывает более интенсивное загрязнение природных систем, нежели утилизация данных отходов складированием.

С учетом этого обстоятельства необходим анализ широко используемых в производственной практике методов утилизации техногенного шлама железного купороса, выделенного при регенерации отработанных травильных растворов, образующихся в кристаллизационных устройствах флотационных сернокислотных ванн, после декапирования листовой стали.

Безводные сульфаты применяются в различных отраслях хозяйства, однако практическая реализация методов утилизации техногенного шлама железного купороса ограничена его составом и объемами. Шлам, образующийся в результате данного процесса, содержит серную кислоту, примеси цинка, марганца, никеля, титана и др. Удельная норма образования шламов составляет свыше 20 кг/т проката .

Техногенный шлам железного купороса не желательно использовать в сельском хозяйстве и в текстильной промышленности. Более целесообразно использовать его при производстве серной кислоты и в качестве коагулянта для очистки сточных вод, кроме очистки от цианидов, т. к. образуются комплексы, не подвергающиеся окислению даже хлором или озоном.

Одним из наиболее перспективных направлений переработки техногенного шлама железного купороса, образующегося при регенерации отработанных травильных растворов, использование его в качестве исходного сырья для получения различных железо-оксидных пигментов. Синтетические железо-оксидные пигменты имеют широкую область применения.

Утилизация содержащегося в топочных газах прокалочной печи диоксида серы, образующегося при получении пигмента «Капут-Мортум», осуществляется по известной технологии аммиачным способом с образованием раствора аммония, используемого при производстве минеральных удобрений. Технологический процесс получения пигмента «Венецианская красная» включает операции смешения исходных компонентов, прокаливания исходной смеси, размол и упаковку и исключает операцию обезвоживания исходной шихты, промывки, сушки пигмента и утилизацию отходящих газов .

При использовании качестве исходного сырья техногенного шлама железного купороса физико-химические характеристики продукта не снижаются и отвечают требованиям для пигментов.

Технико-экологическая эффективность использования техногенного шлама железного купороса для получения железооксидных пигментов обусловлена следующим :

    Не предъявляется жестких требований к составу шлама;

    Не требуется предварительной подготовки шлама, как, например, при использовании его в качестве флокулянтов;

    Возможна переработка как свежеобразованных, так и накопленных в отвалах шламов;

    Объемы потребления не лимитируются, а определяются программой сбыта;

    Возможно использование имеющегося на предприятии оборудования;

    Технология переработки предусматривает использование всех компонентов шлама, процесс не сопровождается образованием вторичных отходов.

6. 2. Цветная металлургия

При производстве цветных металлов также образуется немало отходов. Обогащение руд цветных металлов расширяет применение предварительной концентрации в тяжелых средах, и различных видов сепарации. Процесс обогащения в тяжелых средах позволяет комплексно использовать сравнительно бедную руду на обогатительных фабриках, которые перерабатывают никелевые, свинцово-цинковые руды и руды других металлов. Легкая фракция, получаемая при этом, используется в качестве закладочного материала на рудниках и в строительной индустрии. В Европейских странах используются отходы, образующиеся при добыче и обогащении медной руды, для закладки выработанного пространства и опять таки в производстве строительных материалов, в дорожном строительстве.

При условии переработки бедных низкокачественных руд широкое распространение получают гидрометаллургические процессы, которые используют сорбционные, экстракционные и автоклавные аппараты. Для переработки ранее выбрасываемых трудноперерабатываемых пирротиновых концентратов, которые являются сырьем для получения никеля, меди, серы, драгоценных металлов существует безотходная окислительная технология, проводимая в аппарате-автоклаве и представляющая собой экстракцию всех основных вышеназванных компонентов. Эта технология используется на Норильском горно-обогатительном комбинате.

Из отходов заточки твердосплавного инструмента, шлаков при производстве алюминиевых сплавов также извлекаются ценные компоненты.

Нефелиновые шламы при производстве цемента также используются и позволяют повысить производительность цементных печей на 30% при снижении расхода топлива.

Почти все ТПО цветной металлургии можно использовать для производства строительных материалов. К сожалению, пока еще не все ТПО цветной металлургии используются в строительной индустрии .

6. 2. 1. Хлоридная и регенеративная переработка отходов цветной металлургии

В ИМЕТ РАН были разработаны теоретические и технологические основы хлорно-плазменной технологии переработки вторичного металлосырья. Технология отработана в укрупненно-лабораторном масштабе. Она включает хлорирование металлических отходов газообразным хлором и последующее восстановление хлоридов водородом в ВЧИ-плазменном разряде. В случае переработки монометаллических отходов либо в тех случаях, когда не требуются разделения извлекаемых металлов, оба процесса совмещаются в одном агрегате без конденсации хлоридов. Это имело место при переработке отходов вольфрама.

Отходы твердых сплавов после сортировки, дробления и очистки от внешних загрязнений перед хлорированием окисляются кислородом или кислородосодержащими газами (воздух, СО 2 , водяной пар), в результате чего выгорает углерод, а вольфрам и кобальт превращает в оксиды с образованием рыхлой, легко размалываемой массы, которая восстанавливается водородом или аммиаком, а затем активно хлорируется газообразным хлором. Извлечение вольфрама и кобальта составляет 97 % и более .

В развитии исследований по переработке отходов и отслуживших свой срок изделий из них разработана альтернативная технология регенерации карбидосодержащих отходов твердых сплавов. Сущность технологии состоит в том, что исходный материал подвергается окислению кислородосодержащим газом при 500 – 100 ºС, а затем подвергается восстановлению водородом или аммиаком при 600 – 900 ºС. В образующуюся рыхлую массу вводится сажистый углерод и после размола получается однородная смесь для карбидизации, проводимой при 850 – 1395 ºС, а с добавлением одного или нескольких металлических порошков (W, Mo, Ti, Nb, Ta, Ni, Co, Fe), что позволяет получать ценные сплавы.

Метод решает первоочередные ресурсосберегающие задачи, обеспечивает реализацию технологий рационального использования вторичных материальных ресурсов.

6. 2. 2. Утилизация отходов литейного производства

Утилизация отходов литейного производства – актуальная проблема производства металла и рационального ресурсопользования. При плавке образуется большое количество отходов (40 – 100 кг на 1 т), определенную часть которых составляют донные шлаки и донные сливы, содержащие хлориды, фториды и другие соединения металлов, которые в настоящее время не используются как вторичное сырье, а вывозятся в отвалы. Содержание металла в подобного рода отвалах составляет 15 – 45 %. Таким образом, теряются тонны ценных металлов, которые должны быть возвращены в производство. Кроме этого, происходит загрязнение и засаливание почв .

В России и за рубежом известны различные способы переработки металлсодержащих отходов, но только некоторые из них получили широкое применение в промышленности. Сложность заключается в нестабильности процессов, их длительности малом выходе металла. Наиболее перспективными являются:

    Плавление богатых металлом отходов с защитным флюсом, перемешивание полученной массы для диспергирования на мелкие, однородные по величине и равномерно распределенные по объему расплава капли металла с последующей коанселяцией;

    Разбавление остатков защитным флюсом и разливка через сито расплавленной массы при температуре ниже температуры данного расплава;

    Механическая дезинтеграция с сортировкой пустой породы;

    Мокрая дезинтеграция путем растворения или флюса и отделения металла;

    Центрифугирование жидких остатков плавки.

Опыт проводился на предприятии магниевого производства.

При утилизации отходов предлагается использование действующего оборудования литейных цехов.

Суть метода мокрой дезинтеграции заключается в растворении отходов в воде, чистой или с катализаторами. В механизме переработки растворимые соли перезодят в раствор, а нерастворимые соли и оксиды теряют прочность и рассыпаются, металлическая часть донного слива освобождается и легко отделяется от неметаллической. Данный процесс является экзотермическим, протекает с выделением большого количества тепла, сопровождаясь бурлением и выделением газов. Выход металла в лабораторных условиях составляет 18 – 21.5 %.

Более перспективным является способ плавки отходов. Для утилизации отходов с содержанием металла не менее 10 % сначала необходимо обогащение отходов магнием с частичным отделением солевой части. Отходы загружаются в подготовительный стальной тигель, добавляется флюс (2 – 4 % массы шихты) и плавится. После плавления отходов производится рафинирование жидкого расплава специальным флюсом, расход которого составляет 0,5 – 0,7 % от массы шихты. После отстаивания выход годного металла составляет 75 – 80 % от содержания его в шлаках.

После слива металла остается густой остаток, состоящий из солей и оксидов. Содержание металлического магния в нем не более 3 – 5 %. Цель дальнейшей переработки отходов состояла в извлечении из неметаллической части оксида магния путем обработки их водными растворами кислот и щелочей.

Так как в результате процесса происходит разложение конгломерата, после просушивания и прокаливания можно получить оксид магния с содержанием до 10 % примесей. Часть оставшейся неметаллической части можно использовать в производстве керамики и стройматериалов.

Данная опытная технология позволяет утилизировать свыше 70 % массы отходов, ранее сбрасываемых в отвалы.

Предлагаемый способ заключается в том, что предварительное дробление исходного материала производят выборочно и ориентированно с концентрированным усилием от 900 до 1200 Дж. В процессе переработки отобранные пылевидные фракции заключают в замкнутый объем и оказывают на них механическое воздействие до получения тонкодисперсного порошка с удельной поверхностью не менее 5000 см 2 /г. Установка для осуществления этого способа включает устройство для дробления и грохочения, выполненное в виде манипулятора с дистанционным управлением, на котором установлен гидропневмоударный механизм. Кроме того, установка содержит герметичный модуль, сообщенный с системой отбора пылевидных фракций, имеющий средство для обработки этих фракций в тонкодисперсный порошок. 2 с. и 2 з. п. ф-лы, 4 ил., 1 табл.

Изобретение относится к литейному производству, а более точно к способу переработки литых твердых шлаков в виде глыб с металлическими включениями и установке для полной переработки этих шлаков. Данные способ и установка позволяют практически полностью утилизировать перерабатываемые шлаки, а полученные в результате этого конечные продукты - товарный шлак и товарную пыль использовать в промышленном и гражданском строительстве, например для производства строительных материалов. Образующиеся при переработке шлаков отходы в виде металла и дробленого шлака с металлическими включениями используются как шихтовые материалы для плавильных агрегатов. Переработка литых твердых шлаковых глыб, пронизанных металлическими включениями, сложная, трудоемкая операция, требующая уникального оборудования, дополнительных энергетических затрат, поэтому шлаки практически не используются и вывозятся на свалки, ухудшая экологию и загрязняя окружающую среду. Особую важность приобретают разработки способов и установок для осуществления полной безотходной переработки шлаков. Известен целый ряд способов и установок, частично решающих проблему переработки шлаков. В частности, известен способ переработки металлургических шлаков (SU, A, 806123), заключающийся в дроблении и грохочении этих шлаков до мелких фракций в пределах 0,4 мм с последующим разделением на два продукта: металлический концентрат и шлак. Данный способ переработки металлургических шлаков решает проблему в узком диапазоне, так как предназначен только для шлаков с немагнитными включениями. Наиболее близким по технической сущности к предлагаемому является способ механического отделения металлов от шлака металлургических печей (SU, A, 1776202), включающий дробление металлургического шлака в дробилке и в мельницах, а также разделение по разности плотностей в водной среде фракций шлака и регенерируемого металла в пределах 0,5-7,0 мм и 7-40 мм с содержанием железа в фракциях металла до 98%

Отходы данного способа в виде фракций шлака после полного высушивания и сортировки используют в строительстве. Этот способ более эффективен по количеству и качеству извлекаемого металла, однако он не решает проблему предварительного дробления исходного материала, а также получения качественного по фракционному составу товарного шлака для изготовления, например, строительных изделий. Для осуществления таких способов, в частности, известна поточная линия (SU, A, 759132) для сепарации и сортирования отвальных металлургических шлаков, включающая загрузочное приспособление в виде бункера-питателя, вибрационные грохоты над приемными бункерами, электромагнитные сепараторы, холодильные камеры, барабанные грохота и приспособления для перемещения извлеченных металлических предметов. Однако на этой поточной линии также не предусмотрено предварительное дробление шлака в виде шлаковых глыб. Также известно устройство для грохочения и дробления материалов (SU, A, 1547864), включающее виброгрохот и установленную над ним раму с дробящим приспособлением, выполненную с отверстиями и установленную с возможностью перемещения в вертикальной плоскости, а дробящее приспособление выполнено в виде клиньев с головками в их верхней части, которые установлены с возможностью перемещения в отверстиях рамы, при этом поперечный размер головок больше поперечного размера отверстий рамы. В трехстенной камере по вертикальным направляющим перемещается рама, в которой установлены дробящие приспособления, свободно висящие на головках. Площадь, занимаемая рамой, соответствует площади виброгрохота, и дробящие приспособления охватывают всю площадь решетки виброгрохота. Передвижная рама с помощью электропривода по рельсам накатывается на полотно виброгрохота, на котором установлена глыба шлака. Дробящие приспособления на гарантированном зазоре проходят над глыбой. При включении виброгрохота дробящие приспособления вместе с рамой опускаются вниз, не встречая препятствия, на всю длину скольжения до 10 мм от полотна виброгрохота, другие части (клинья) дробящего приспособления, встретив препятствие в виде поверхности глыбы шлака, остаются на высоте препятствия. Каждое дробящее приспособление (клин) при попадании на шлаковую глыбу находит свою точку соприкосновения с ней. Вибрация от грохота передается через лежащую на нем глыбу шлака в точках касания клиньев дробящих приспособлений, которые также начинают совершать в резонансе колебания в направляющих рамы. Разрушение глыбы шлака не происходит, и идет лишь частичное истирание шлака о клинья. Более близким к решению предлагаемого способа является вышеуказанное устройство для сепарации и сортирования отвальных и литейных шлаков (RU, A, 1547864), включающее систему доставки исходного материала в зону предварительного дробления, осуществляемого устройством для грохочения и дробления материалов, выполненным в виде приемного бункера с установленным над ним виброгрохотом и приспособления для непосредственного дробления шлака, вибродробилки для дальнейшего измельчения материала, электромагнитные сепараторы, вибросито, бункеры-накопители отсортированного шлака с дозаторами и транспортирующие устройства. В системе подачи шлака предусмотрен механизм-кантователь, обеспечивающий прием шлаковни с находящейся в ней остывшей глыбой шлака и подачу ее в зону виброгрохота, выбивку шлаковой глыбы на полотно виброгрохота и возврат пустой шлаковни в исходное положение. Вышеперечисленные способы и устройства для их осуществления используют варианты дробления и оборудование для переработки шлаков, при работе которых выделяются не утилизируемые пылевидные фракции, загрязняющие почву и воздух, что в значительной мере воздействует на экологическое равновесие окружающей среды. В основу изобретения положена задача создать способ переработки шлаков, в котором предварительное дробление исходного материала с последующей его сортировкой по уменьшающимся размерам фракций и отбор образующихся пылевидных фракций осуществляют таким образом, что появляется возможность полной утилизации обрабатываемых шлаков, а также создать установку для осуществления данного способа. Эта задача решена в способе переработки шлаков литейного производства, включающем предварительное дробление исходного материала и последующую его сортировку по уменьшающимся фракциям до получения товарного шлака с одновременным отбором образующихся пылевидных фракций, в котором согласно изобретению предварительное дробление осуществляют выборочно и ориентированно с концентрированным усилием от 900 до 1200 Дж, а отобранные пылевидные фракции заключают в замкнутый объем и оказывают на них механическое воздействие до получения тонкодисперсного порошка с удельной поверхностью не менее 5000 см 2 /г. Целесообразно тонкодисперсный порошок использовать как активный исполнитель для строительных смесей. Такое выполнение способа позволяет полностью перерабатывать шлаки литейный производств, имея в результате два конечных продукта товарный шлак и товарную пыль, используемые для строительных целей. Задача также решена посредством установки для осуществления способа, включающей систему доставки исходного материала в зону предварительного дробления, устройство для дробления и грохочения, вибрационные дробилки с электромагнитными сепараторами и транспортирующими приспособлениями, осуществляющими измельчение и сортировку материала по уменьшающимся фракциям, классификаторы крупной и мелкой фракции и систему отбора пылевидных фракций, в которой согласно изобретению устройство для дробления и грохочения выполнено в виде манипулятора с дистанционным управлением, на котором установлен гидропневмоударный механизм, и в установке смонтирован герметичный модуль, сообщенный с системой отбора пылевидных фракций, имеющий средство для обработки этих фракций в тонкодисперсный порошок. Предпочтительно в качестве средства для обработки пылевидных фракций использовать каскад последовательно расположенных винтовых мельниц. Один из вариантов изобретения предусматривает, что установка имеет систему возврата обрабатываемого материала, установленную вблизи классификатора крупной фракции, для его дополнительного измельчения. Такое выполнение установки в целом позволяет с высокой степенью надежности и эффективности и без больших затрат электроэнергии переработать отходы литейного производства. Сущность изобретения заключается в следующем. Литые шлаки литейного производства характеризуются прочностью, то есть сопротивлением разрушению при возникновении внутренних напряжений, появляющихся в результате какого-либо нагружения (например, при механическом сжатии), и могут быть отнесены по пределам прочности на сжатие ( сж) к горным породам средней прочности и прочным. Наличие металлических включений в шлаке армирует монолитную глыбу, упрочняя ее. Описанные ранее способы разрушения не учитывали прочностных характеристик разрушаемого исходного материала. Усилие разрушения характеризуется величиной P = сж F, где Р усилие разрушения при сжатии, F площадь прилагаемого усилия, было значительно ниже прочностных характеристик шлака. Предлагаемый способ основан на уменьшении площади приложения усилия F до размеров, определяемых прочностными характеристиками материала, используемого инструмента и выбором усилия Р. Вместо статических усилий, используемых в вышеописанных технических решениях, в настоящем изобретении применяют динамические усилия в виде направленного, ориентированного удара с определенной энергией и частотой, что в целом увеличивает эффективность способа. Опытным путем подобраны параметры частоты и энергии нанесения ударов в пределах 900-1200 Дж с частотой 15-25 ударов в минуту. Такая методика дробления осуществляется в предлагаемой установке при помощи гидропневмоударного механизма, смонтированного на манипуляторе устройства для дробления и грохочения шлака. Манипулятор обеспечивает прижим к объекту разрушения гидропневмоударного механизма во время его работы. Регулирование прилагаемого усилия дробления шлаковых глыб производят дистанционно. В то же время шлаки это материал с потенциальными вяжущими свойствами. Способность к их твердению появляется преимущественно под действием активизирующих добавок. Однако есть такое физическое состояние шлаков, когда потенциальные вяжущие свойства проявляются после механических воздействий на фракции переработанного шлака до получения определенных размеров, характеризующихся показателем удельной поверхности. Получение высокой удельной поверхности измельченных шлаков является существенным фактором приобретения ими химической активности. Проведенные лабораторные исследования подтверждают, что значительное улучшение качества шлака, используемого как вяжущее, достигается при измельчении, когда его удельная поверхность превышает 5000 см 2 /г. Такую величину удельной поверхности можно получить при механическом воздействии на отбираемые пылевидные фракции, заключенные в замкнутый объем (герметичный модуль). Это воздействие осуществляют при помощи каскада последовательно расположенных в герметичном модуле винтовых мельниц, постепенно превращающих этот материал в тонкодисперсный порошок с удельной поверхностью более 5000 см 2 /г. Таким образом предложенные способ и установка для переработки шлаков позволяют практически полностью их утилизировать, в результате чего получают товарную продукцию, используемую в частности в строительстве. Комплексное использование шлаков в значительной мере оздоровляет окружающую среду, а также высвобождает продуцирующие площади, используемые под отвалы. В связи с повышением степени утилизации перерабатываемых шлаков снижается себестоимость выпускаемой продукции, что, соответственно, повышает эффективность используемого изобретения. На фиг. 1 схематично изображена установка для осуществления способа переработки шлака согласно изобретению, в плане; на фиг. 2 разрез А-А на фиг. 1;

На фиг. 3 вид Б на фиг. 2;

На фиг. 4 разрез В-В на фиг. 3. Предлагаемый способ предусматривает полную безотходную переработку шлаков для получения товарного дробленого шлака требуемых фракций и пылевидных фракций, перерабатываемых в тонкодисперсный порошок. Кроме того, получают материал с металлическими включениями, который повторно используют в плавильных агрегатах линейного и металлургического производства. Для этого литую заготовку глыбу с металлическими включениями предварительно ориентированно раздрабливают с концентрированным усилием от 900 до 1200 Дж над виброгрохотом с провальной решеткой. Металл и шлак с металлическими включениями, размеры которых больше размеров отверстий провальной решетки виброгрохота, отбирают магнитной плитой крана и складируют в тару, а оставшиеся на виброгрохоте куски шлака направляют на более мелкое дробление в виброщековую дробилку, размещенную в непосредственной близости от виброгрохота. Провалившийся через провальную решетку раздробленный материал транспортируют по системе виброщековых дробилок с отбором металла и шлака с включениями металла электромагнитными сепараторами для дальнейшего измельчения и сортировки. Размер кусков, не прошедших через провальную решетку, колеблется от 160 до 320 мм, а прошедших от 0 до 160 мм. На последующих этапах шлак измельчают до фракций с размером 0-60 мм, 0-12 мм и отбирают шлак с металлическими включениями. Затем измельченный шлак подают на классификатор крупной фракции, где происходит отбор материала с размером 0-12 и более 12 мм. Более крупный материал направляют в систему возврата на доизмельчение, а материал с размером 0-12 мм направляют по основному технологическому потоку на классификатор мелкой фракции, где происходит отбор пылевидной фракции размера 0-1 мм, которую собирают в герметичном модуле для последующего воздействия и получения тонкодисперсного порошка с удельной поверхностью более 5000 см 2 /г, используемого как активный наполнитель для строительных смесей. Отобранный на классификаторе мелкой фракции материал с размером 1-12 мм является товарным шлаком, который направляют в накопительные емкости для последующей отгрузки заказчику. Состав этого товарного шлака приведен в таблице. Отобранные фракции шлака с металлическими включениями по дополнительному технологическому потоку возвращают в плавильный цех на переплавку. Содержание металла в отобранных магнитной сепарацией измельченных шлаках находится в пределах 60-65%

Используемый в качестве активного наполнителя тонкодисперсный порошок включают в состав вяжущего, например, для получения бетона, где заполнителем является дробленый литейный шлак с размером фракции 1-12. Исследование качественных характеристик полученного бетона указывает на увеличение его прочности при проверке на морозостойкость после 50 циклов. Описанный выше способ переработки шлаков может быть с успехом воспроизведен на установке (фиг. 1-4), содержащей систему доставки шлака из плавильного цеха в зону предварительного дробления, где размещены кантователь 1, виброгрохот 2 с провальной немагнитной решеткой 3 и манипулятор 4, управляемый дистанционно с пульта (С). На манипуляторе 4 установлен гидропневмоударный механизм в виде долбяка 5. Для обеспечения более надежного дробления исходного материала до необходимого размера вблизи виброгрохота 2 размещены вибробункер 6 и щековая дробилка 7. Кроме того, в зоне дробления смонтирован кран 8 для удаления негабаритных металлических кусков, остающихся на провальной решетке 3. Раздробленный материал при помощи системы транспортирующих приспособлений, в частности ленточных конвейеров 9, перемещается по основному технологическому потоку (изображен на фиг. 1 контурной стрелкой), на пути которого последовательно смонтированы виброщековые дробилки 10 и электромагнитные сепараторы 11, обеспечивающие измельчение и сортирование шлака по уменьшающимся фракциям до заданных размеров. На пути основного технологического потока смонтированы классификаторы 12 и 13 для крупной и мелкой фракции измельченного шлака. Установка также предполагает наличие дополнительного технологического потока (на фиг. 1 изображен треугольной стрелкой), включающего систему возврата материала, не измельченного до необходимого размера, расположенную вблизи классификатора 12 для крупной фракции и состоящую из перпендикулярно расположенных относительно друг друга транспортеров и щековой дробилки 14, а также систему 15 удаления отмагниченных материалов. На выходе основного технологического потока установлены накопители 16 полученного товарного шлака и герметичный модуль 17, сообщенный с системой отбора пыли, выполненной в виде емкости 18. Внутри модуля 17 последовательно расположен каскад винтовых мельниц 19 для обработки пылевидных фракций в тонкодисперсный порошок. Устройство работает следующим образом. Шлаковня 20 с остывшим шлаком подается, например, погрузчиком (не показан) в зону работы установки и размещается на тележке кантователя 1, который опрокидывает ее на решетку 3 виброгрохота 2, выбивает шлаковую глыбу 21 и возвращает шлаковню в исходное положение. Далее пустую шлаковню снимают с кантователя и на ее место устанавливают другую с шлаком. Затем манипулятор 4 подводится к виброгрохоту 2 для раздробления шлаковой глыбы 21. Манипулятор 4 имеет шарнирную стрелку 22, на которой шарнирно закреплен долбняк 5, дробящий шлаковую глыбу на куски разной крупности. Корпус манипулятора 4 установлен на подвижной несущей раме 23 и вращается вокруг вертикальной оси, обеспечивая обработку глыбы по всей площади. Манипулятор прижимает пневмоударный механизм (долбняк) к шлаковой глыбе в выбранной точке и наносит серию ориентированных и концентрированных ударов. Дробление производят до таких размеров, которые обеспечивают максимальное прохождение кусков через отверстия в провальной решетке 3 виброгрохота 2. После окончания дробления манипулятор 4 возвращается в исходное положение и вступает в работу виброгрохот 2. Оставшиеся на поверхности виброгрохота отходы в виде металла и шлака с металлическими включениями отбираются магнитной плитой крана 8, причем качество отбора обеспечивается за счет установки на виброгрохоте 2 провальной решетки 3 из немагнитного материала. Отобранный материал складируется в тару. Другие крупные куски шлака с незначительным содержанием металла сталкиваются с провальной решетки в щековую дробилку 7, откуда продукт дробления поступает в основной технологический поток. Прошедшие через отверстия провальной решетки 3 фракции шлака попадают в вибробункер 6, из которого ленточным конвейером 9 подаются на систему виброщековых дробилок 10 с электромагнитными сепараторами 11. Измельчение и сортирование фракций шлака обеспечивается в основном непрерывном технологическом потоке при помощи системы транспортирующих приспособлений конвейеров 9, взаимосвязанных между собой в указанном потоке. Измельченный в основном потоке материал поступает на классификатор 12, где происходит его сортирование на фракции размера 0-12 мм. Более крупные фракции по системе возврата (дополнительный технологический поток) поступают в щековую дробилку 14, доизмельчаются и опять возвращаются в основной поток на повторную сортировку. Пропущенный через классификатор 12 материал подается на классификатор 13, в котором происходит отбор пылевидных фракций размера 0-1 мм, поступающих в герметичный модуль 17, и 1-12 мм, поступающих в накопители 16. В процессе измельчения материала в основном технологическом потоке образующаяся пыль по системе ее отбора (местные отсосы) собирается в емкости 18, которая сообщается с модулем 17. В дальнейшем производят обработку всей собранной в модуле пыли в тонкодисперсный порошок с удельной поверхностью более 5000 см 2 /г, при помощи каскада последовательно установленных винтовых мельниц 19. С целью упорядочивания очистки основного потока шлака от металлических включений на всем его пути производится их отбор при помощи электромагнитных сепараторов 11 и передача в систему 15 удаления отмагниченных материалов (дополнительный технологический поток), в последующем транспоpтируемых на переплавку.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ переработки шлаков литейного производства, включающий предварительное дробление исходного материала и последующую его сортировку по уменьшающимся фракциям до получения товарного шлака с одновременным отбором образующихся пылевидных фракций, отличающийся тем, что предварительное дробление осуществляют выборочно и ориентированно с концентрированным усилием от 900 до 1200 Дж, а отобранные пылевидные фракции заключают в замкнутый объем и оказывают на них механическое воздействие до получения тонкодисперсного порошка с удельной поверхностью не менее 5000 см 2 . 2. Установка для переработки шлаков литейного производства, включающая систему доставки исходного материала в зону предварительного дробления, устройство для дробления и грохочения, вибрационные дробилки с электромагнитными сепараторами и транспортирующими приспособлениями, осуществляющими измельчение и сортировку материала по уменьшающимся фракциям, классификаторы крупной и мелкой фракции и систему отбора пылевидных фракций, отличающаяся тем, что устройство для дробления и грохочения выполнено в виде манипулятора с дистанционным управлением, на котором установлен гидропневмоударный механизм, и в установке смонтирован герметичный модуль, сообщенный с системой отбора пылевидных фракций, имеющий средство для обработки этих фракций в тонкодисперсный порошок. 3. Установка по п. 2, отличающаяся тем, что средство для обработки пылевидных фракций в тонкодисперсный порошок представляет собой каскад последовательно расположенных винтовых мельниц. 4. Установка по п. 2, отличающаяся тем, что она снабжена системой возврата обрабатываемого материала, установленной вблизи классификатора крупной фракции, для его дополнительного измельчения.

Литейное производство является основной заготовительной базой машиностроения. Около 40% всех заготовок, используемых в машиностроении, получают литьем. Однако, литейное производство является одним из наиболее экологически неблагоприятных.

В литейном производстве применяется более 100 технологических процессов, более 40 видов связующих, более 200 противопригарных покрытий.

Это привело к тому, что в воздухе рабочей зоны встречается до 50 вредных веществ, регламентированных санитарными нормами. При производстве 1т чугунных отливок выделяется:

    10..30 кг - пыли;

    200..300 кг - оксида углерода;

    1..2 кг - оксида азота и серы;

    0.5..1.5 г - фенола, формальдегида, цианидов и др.;

    3 м 3 - загрязненных сточных вод может поступить в водный бассейн;

    0.7..1.2 т - отработанных смесей в отвал .

Основную массу отходов литейного производства составляют отработанные формовочные и стержневые смеси и шлак. Утилизация этих отходов литейного производства наиболее актуальна, т.к. несколько сот гектаров поверхности земли занимают вывозимые ежегодно в отвал смеси , в Одесской области.

В целях снижения загрязнения почв различными промышленными отходами в практике охраны земельных ресурсов предусматриваются следующие мероприятия:

    утилизация;

    обезвреживание методом сжигания;

    захоронение на специальных полигонах;

    организация усовершенствованных свалок .

Выбор метода обезвреживания и утилизации отходов зависит от их химического состава и степени влияния на окружающую среду.

Так, отходы металлообрабатывающей, металлургической, угольной промышленности, содержат частицы песка, породы и механические примеси. Поэтому отвалы изменяют структуру, физико-химические свойства и механический состав почв.

Указанные отходы используют при строительстве дорог, засыпке котлованов и отработанных карьеров после обезвоживания. В тоже время отходы машиностроительных заводов и химических предприятий, содержащие соли тяжелых металлов, цианиды, токсичные органические и неорганические соединения, утилизации не подлежат. Эти виды отходов собирают в шламонакопители, после чего их засыпают, утрамбовывают и озеленяют место захоронения .

Фенол - наиболее опасное токсичное соединение, находящееся в формовочных и стержневых смесях. В тоже время исследования показывают, что основная часть фенолсодержащих смесей, прошедших заливку, практически не содержит фенола и не представляет собой опасности для окружающей среды. Кроме того, фенол, несмотря на его высокую токсичность, быстро разлагается в почве . Спектральный анализ отработанных смесей на других видах связующего показал отсутствие особоопасных элементов:Hg, Pb, As, F и тяжелых металлов . Т.е., как показывают расчеты данных исследований, отработанные формовочные смеси не представляют собой опасности для окружающей среды и не требуют каких-либо специальных мероприятий по их захоро­нению . Негативным фактором является само существование отвалов, которые создают неприглядный пейзаж, нарушают ландшафт. Кроме того, пыль, уносимая с отвалов ветром, загрязняет окружающую среду . Однако, нельзя сказать, что проблема отвалов не решается. В литейном производстве существует целый ряд технологического оборудования, позволяющего проводить регенерацию формовочных песков и использовать их в производственном цикле неоднократно. Существующие методы регенерации традиционно делятся на механические, пневматические, термические, гидравлические и комбинированные.

По данным Международной комиссии по регенерации песков, в 1980 г. из 70 опрошенных литейных предприятий Западной Европы и Японии 45 использовали установки механической регенерации .

В тоже время, литейные отработанные смеси - хорошее сырье для стройматериалов: кирпича, силикатного бетона, и изделий из него, строительных растворов, асфальтобетона для дорожных покрытий, для отсыпки полотна железных дорог .

Исследования Свердловских ученых (Россия) показали, что отходы литейного производства обладают уникальными свойствами: ими можно обрабатывать осадки сточных вод (для этого пригодны существующие отвалы литейного производства); защищать стальные конструкции от почвенной коррозии . Специалисты Чебоксарского завода промышленных тракторов (Россия) использовали пылевидные отходы регенерации в качестве добавки (до 10%) при производстве силикатного кирпича .

Многие литейные отвалы используются как вторичное сырье в самом литейном производстве. Так, например, кислый шлак сталелитейного производства и феррохромовый шлак применяются в технологии шликерного формообразования при литье по выплавляемым моделям .

В ряде случаев отходы машиностроительных и металлургических производств содержат значительное количество химических соединений, которые могут представлять ценность как сырье и использоваться в виде дополнения к шихте .

Рассмотренные вопросы улучшения экологической обстановки при производстве литых деталей позволяет сделать вывод о том, что в литейном производстве можно комплексно решать весьма сложные экологические проблемы.

Понравилась статья? Поделиться с друзьями: