Чиллер для охлаждения принцип работы. Что такое чиллер? Принцип работы системы "Чиллер-фанкойл". Важные аспекты монтажа чиллера

Чтобы создать у себя в доме комфортные условия летом, мы стремимся охладить воздух в жилище, устанавливая кондиционеры. Когда надо снизить температуру в 2 или 3 комнатах, мы ставим столько же охладителей или сплит-систем. А что делать, если нужно поддерживать прохладу в большом частном доме, да еще и с двумя или тремя этажами? Для таких целей вместо кондиционеров используется климатическая система чиллер-фанкойл. О том, что это такое и как это работает, пойдет речь в данном материале.

Современная система чиллер – фанкойл призвана поддерживать температурный режим внутри всего здания круглогодично. То есть, система может обеспечивать как охлаждение, так и нагрев воздушной среды. При этом температура в комнатах может регулироваться в соответствии с пожеланиями домовладельца. В летнее время главную роль здесь играет охлаждающее устройство – чиллер. Его задача – выработать холод и подать его внутрь здания, используя трубопроводы с хладоносителем, что зимой играет роль теплоносителя.

В качестве хладоносителя выступает, как правило, обычная очищенная вода, реже – незамерзающее вещество – этиленгликоль. Последний по своей теплоемкости не уступает воде, оттого успешно применяется вместо нее как в системе хладоснабжения, так и отопления. Далее, по трубам вода с низкой температурой поступает в другой теплообменный агрегат – фанкойл, установленный в каждом помещении. В его теплообменнике вода нагревается, передавая свой холод воздуху комнаты, после чего возвращается обратно в чиллер.

По сути, основные элементы системы чиллер-фанкойл напоминают детали кондиционера, - наружный блок (чиллер), внутренний блок (фанкойл) и соединяющие их трубопроводы с хладагентом. Только вместо фреона по трубам течет вода, а внутренних блоков может быть сколько угодно, это зависит от холодопроизводительности чиллера.

Поскольку работа чиллера зависит от потребности в холоде, а она непостоянна, то в промежуточном гидравлическом модуле схемы имеется емкость – аккумулятор для хладоносителя, а для компенсации теплового расширения воды к трубопроводу подачи подключен расширительный бак. Необходимость в насосе для перекачки хладоносителя очевидна, что и показано на схеме.

Соединение чиллера и фанкойлов через гидравлический модуль

Как было сказано выше, данная климатическая система относится к воздушным и в зимнее время может работать на обогрев помещений, только хладагент, охлаждающий воздух, становится теплоносителем и нагревается котельной установкой. Благодаря этому подобные схемы задействованы для поддержания микроклимата в зданиях крупных торговых центров, кинотеатров и прочих строениях с большими габаритами.

Разновидности чиллеров

Надо сказать, что фреон в системе все равно присутствует и находится он внутри холодильной машины. То есть, принцип работы чиллера, как и кондиционера, заключается в переносе тепла рабочим телом (фреоном) от одной среды к другой. В нашем случае тепло отбирается испарителем чиллера от нагретой в фанкойле воды и передается окружающему воздуху либо снова воде, что служит своего рода посредником – охладителем конденсационного блока.

Напомним, что фреон, - это газ, переходящий при стандартных условиях в жидкое агрегатное состояние. Это свойство использует устройство чиллера, где фреон испаряется в теплообменнике – испарителе. Происходит это за счет отбора энергии для парообразования у нагретой в фанкойлах воды. В результате последняя снова уходит в здание на охлаждение воздуха, а фреон, нагнетаемый компрессором, попадает во второй теплообменник – конденсатор, где он охлаждается и снова возвращается в жидкое состояние.

Процесс конденсации во втором теплообменнике чаще всего происходит под воздействием наружной среды, этот принцип использует чиллер с воздушным охлаждением. Для достижения высокой эффективности процесса воздух прогоняется сразу сквозь несколько радиаторов с помощью осевых вентиляторов, обеспечивающих потребный расход.

В климатических системах больших зданий часто задействованы чиллеры с водяным охлаждением, чей принцип действия мало чем отличается от воздушного агрегата. Только здесь для конденсации фреона установлен другой тип теплообменника, в котором циркулирует вода, она служит охладителем вместо воздуха.

Принцип работы установки с водяным охлаждением

В результате получается более дорогая и сложная схема с дополнительным контуром водяного охлаждения, зато холодопроизводительность такой системы выше, нежели у воздушной. Сложность и дороговизна возникают из-за того, что саму охлаждающую конденсатор воду тоже надо охлаждать, но теперь уже с помощью воздуха, а для этого требуется дополнительная установка – градирня (драйкулер). Функционирует она просто: вода проходит через несколько радиаторов, на каждом из которых установлен осевой вентилятор большой производительности, прогоняющий сквозь него мощный поток воздуха.

Принцип работы фанкойла

Разобравшись в работе чиллера, перейдем к рассмотрению, что такое фанкойл. Это устройство, обеспечивающее процесс теплообмена внутри каждого помещения. Его задача – поддержание температуры воздушной среды на заданном уровне, для этой цели агрегат снабжен необходимыми приборами и средствами автоматизации.

Действует он по той же схеме, что и драйкулер: через алюминиевый радиатор, внутри которого циркулирует вода, осевым вентилятором прогоняется воздушный поток. Пройдя через ребра теплообменника, он отдает тепловую энергию воде, а сам охлаждается и возвращается в комнату. Рабочая схема фанкойла показана ниже на рисунке.

1 – панель для подключения электрического оборудования; 2 – корпус агрегата в потолочном исполнении; 3 – вентилятор; 4 – теплообменник из алюминия или меди; 5 – ванночка для конденсата; 6 – клапан воздушный с фильтром; подключение трубки и конденсатного насоса.

Поскольку работа фанкойлов в летнее время связана с большим расходом охлаждаемых воздушных масс, в конструкции агрегата предусмотрена специальная емкость для накопления конденсата и небольшой насос, откачивающий его в канализацию. Помимо потолочного исполнения фанкойла, изображенного на схеме, существуют канальные и настенные модели устройств.

В отличие от системы отопления, соединение чиллера с фанкойлами осуществляется трубопроводами, покрытыми теплоизоляцией, в противном случае КПД всей системы ощутимо снизится.

Площадь любого жилища или общественного здания поделена на климатические зоны с разным температурным режимом. По этой причине каждую зону должен обслуживать один или группа фанкойлов, имеющих одинаковые настройки автоматики. Общее же количество фанкойлов определяется расчетом еще на стадии разработки схемы.

Следует отметить, что без корректного расчета и проектирования системы здесь не обойтись, так как все перечисленное оборудование имеет весьма приличную стоимость. Цена ошибки слишком высока, поскольку неверно подобранный чиллер для охлаждения воды или фанкойл в ту или иную комнату не смогут обеспечить требуемый микроклимат, а переделывать все по новой будет очень дорого.

Заключение

Системы чиллер – фанкойл отличаются эффективной работой и экономией энергоресурсов, для производства 3 кВт холода нужно ориентировочно 1 кВт электроэнергии. Но проектирование, приобретение оборудования, а также монтаж и обслуживание фанкойлов и чиллера требуют немалых вложений.

Как сделать вентиляцию в частном доме Как выбрать увлажнитель воздуха Спринклерные системы пожаротушения

Довольно непросто разбираться во всем, что есть на свете. А быть профессионалом во всех областях науки и техники и вовсе практически невозможно. Однако по долгу службы, в учебных целях, или просто для повышения собственной осведомленности нам необходимо быстро получить максимум информации о каком-то устройстве или процессе, в легком и доступном для непрофессионалов, виде. Для этих целей существуют так называемые "пособия для чайников", то есть для тех, кому нужно быстро понять, о чем идет речь и как это работает. Разберем подобную инструкцию и рассмотрим принцип работы чиллера (для чайников).

Что это такое

Чиллер (или по-другому) - это агрегат для создания искусственного холода и передачи его соответствующему холодоносителю. В роли такового, как правило, выступает обычная вода, реже - рассолы (растворы солей в воде). Этимология слова относит его к английскому языку, к глаголу to chill (англ.) - охлаждать, и образованному от него существительному chiller (англ.) - охладитель . Холодильная машина может быть двух разных типов. Есть парокомпрессионный и абсорбционный чиллер. Принцип работы каждого из них существенно отличается.

Охлаждать всегда

Основная задача любого холодильного агрегата - получение холода в искусственных условиях, то есть там, где это невозможно сделать за счёт природы (фрикулинга). Понятно дело, что зимой, с глубоким минусом на улице, не составит особого труда. Но что делать летом, когда температура окружающего воздуха намного выше необходимой нам? Здесь на помощь приходит чиллер. Принцип работы его основан на использовании специальных сред, создаваемых определенными веществами (хладагентов). Они обладают способностью отбирать теплоту от другой среды (то есть охлаждать её) при кипении, переносить и выделять её в иную среду при конденсации. При работе холодильного цикла такие хладагенты изменяют своё фазовое (агрегатное) состояние с жидкого на газообразное и обратно.

Теплообменники

Любую холодильную машину можно условно разделить на две зоны: низкого и высокого давления. Независимо от типа, в любом чиллере всегда будут присутствовать два теплообменника: испаритель - в зоне низкого давления и конденсатор - в зоне высокого давления. Без этих двух компонентов системы не сможет работать чиллер. Принцип работы таких теплообменников основан на теплопроводности (кондукции), то есть передаче теплоты от одной среды в другую через разделяющую эти две среды стенку. Испаритель холодильной машины отдаёт выработанный холод в систему потребителю, а конденсатор либо сбрасывает отведённую теплоту в окружающую среду, либо отправляет её на рекуперацию (подогрев первой ступени ГВС, теплые полы и др.).

Как работает

Рассмотрим стандартный парокомпрессионный чиллер. Принцип работы такой холодильной машины теоретически основан на Компрессор повышает давление газа, одновременно с этим поднимая его температуру. Горячий газ под высоким давлением подается в конденсатор, где участвует в процессе теплообмена с другой средой более низкой температуры. Как правило, это либо вода (рассол), либо воздух. Здесь газ конденсируется в жидкость, в процессе чего выделяется избыточная теплота, отдаваемая холодоносителю и отводимая, таким образом, от потребителя. Далее жидкость поступает в дросселирующие устройство, где происходит снижение давления в системе с соответствующим падением температуры. После этого частично вскипевшая в жидкость поступает непосредственно в испаритель, который также является важной частью системы "чиллер-фанкойл". Принцип работы испарителя аналогичен конденсатору. Здесь происходит теплообмен между холодоносителем (который и уносит холод в фанкойл) и хладагентом, который начинает вскипать и при этом забирает теплоту от другой среды. После испарителя газ поступает в компрессор, и цикл повторяется.

Абсорбционный чиллер

Работа компрессора в парокомпрессионном цикле требует значительных затрат электроэнергии. Однако уже сейчас существует оборудование, позволяющее избежать этих трат. Рассмотрим принцип работы абсорбционного чиллера. Вместо компрессора здесь используется система повышения давления на основе абсорбирующего вещества с использованием источника теплоты, подводимого извне. Таким источником может служить горячий пар, горячая вода, либо тепловая энергия от сжигания газа или иного топлива. Эта энергия идёт на ректификацию или выпаривание абсорбента, в процессе чего повышается давление хладагента и он подается в конденсатор. Далее цикл работает аналогично парокомпрессионному, а после испарителя газообразный хладагент подается на теплообменник-абсорбер, где и происходит его смешивание с абсорбентом. В качестве абсорбента используется аммиак (в водно-аммиачных чиллерах) или (бромистолитиевые АБХМ).

Система "чиллер-фанкойл"

Принцип работы основан на подготовке воздуха в специальных теплообменниках-доводчиках, фанкойлах (от слов fan (англ.) - вентилятор и coil - змеевик ), которые устанавливают в воздуховодах перед его непосредственной раздачей в обслуживаемое помещение. Преимущества таких систем перед центральным кондиционированием заключается в том, что в каждой комнате можно поддерживать разные параметры воздуха (температура, влажность, подвижность), в зависимости от назначения помещения и расчета теплового баланса. И хотя воздух с приточной установки иногда пропускают через доводчики для его финальной обработки, то есть так же, как и в системе "чиллер-фанкойл", принцип работы описанных систем заметно отличается.

Мультизональная климатическая система чиллер-фанкойл предназначена для создания комфортных условий внутри здания большой площади. Работает она постоянно - летом снабжает холодом, а зимой теплом, прогревая воздух до заданной температуры. С ее устройством стоит познакомиться, согласны?

В предложенной нами статье подробно описана конструкция и составные части климатической системы. Приведены и детально разобраны способы подключения оборудования. Мы расскажем, как устроена и функционирует эта система терморегуляции.

Роль охлаждающего устройства отведена чиллеру - внешнему блоку‚ производящему и подающему холод по трубопроводам с циркулирующей по ним водой или этиленгликолем. Этим она и отличается от других сплит-систем, где в качестве теплоносителя закачивают фреон.

Для движения и передачи фреона, хладагента, нужны дорогие медные трубы. Здесь же с этой задачей прекрасно справляются водопроводные трубы с теплоизоляцией. На ее работу не влияет температура наружного воздуха, тогда как сплит-системы с фреоном теряют работоспособность уже при -10⁰. Внутренним теплообменным агрегатом является фанкойл.

Он принимает жидкость с низкой температурой, затем передает холод в воздушную среду помещения‚ а нагретая жидкость возвращается назад в чиллер. Фанкойлы устанавливают во всех комнатах. Каждый из них работает по индивидуальной программе.

Основные элементы системы - насосная станция‚ чиллер‚ фанкойл. Фанкойл может быть установлен на большом расстоянии от чиллера. Все зависит от того‚ какой силой обладает насос. Число фанкойлов пропорционально мощности чиллера

Обычно такие системы применяют в гипермаркетах‚ торговых комплексах‚ сооружениях‚ возведенных под землей‚ гостиницах. Иногда их используют в качестве отопления. Тогда по второму контуру в фанкойлы подают нагретую воду или переключают систему на котел отопления.

Конструкционное исполнение системы

По конструкционному исполнению системы чиллер-фанкойл бывают 2-трубными и 4-трубными. По типу установки отличают устройства настенные‚ напольные‚ встраиваемые.

Оценивают систему по таким основным параметрам:

  • мощности или холодопроизводительности чиллера;
  • производительности фанкойлов;
  • эффективности перемещения воздушной массы;
  • длине магистралей.

Последний параметр зависит от силы насосной установки и качества теплоизоляции труб.

Галерея изображений

Чиллером называют полнофункциональную холодильную установку, предназначенную для охлаждения воды, а также незамерзающих растворов, которые используют в системах кондиционирования – приточных установках, фанкойлах, центральных кондиционерах, прочих прикладных процессах. Чиллеры используют в качестве теплового насоса, а также с целью подогрева воды в холодное время. Чиллеры имеют широкий диапазон холодопроизводительности, вследствие чего находят применение в системах кондиционирования малых объектов (квартиры, коттеджи, небольшие магазины) и больших сооружение (офисных, производственных и других зданий). Кроме того, чиллеры используют в пищевой промышленности с целью охлаждения воды, различных напитков, в спортивно-оздоровительной области – для охлаждения ледовых площадок и катков, в фармацевтической сфере – для охлаждения медикаментов. Современный рынок представлен несколькими видами чиллеров с точки зрения конструктивного исполнения: чиллеры с водяным и воздушным охлаждением конденсатора, последние виды чиллеров получили наибольшее распространение, поскольку предназначены для наружной установки.

Принцип работы чиллера основан на процессе охлаждения основного компонента этого агрегата. Перегретый пар хладагента, имеющего низкое давление, выходит из испарителя, поступая в компрессор и попутно охлаждая обмотки его электродвигателя. Пар хладагента в компрессоре сжимается, при этом для смазки, охлаждения и герметизации зазоров в компрессор впрыскивается масло. Горячий пар под высоким давлением, покидая компрессор, поступает в воздухоохлаждаемый конденсатор, в котором равномерно распределяется по контурам теплообменника и отдает охлаждаемому наружному воздуху тепло, а сам конденсируется. Перед выходом из конденсатора жидкий хладагент подается в переохладитель, где его температура понижается ниже точки насыщения, что увеличивает эффективность цикла. Проходя через высокоэффективный фильтр-осушитель, где из переохлажденного жидкого фреона удаляется влага, хладагент поступает в терморасширительный вентиль, где он дросселируется, частично испаряясь благодаря собственной теплоте жидкости. К концу процесса расширения хладагент являет собой смесь пара и жидкости низкого давления, поступающей в испаритель и равномерно распределяющейся по его трубкам. Далее, двигаясь по испарителю, хладагент закипает, забирая тепло у охлаждаемой воды, вследствие чего приобретая парообразное состояние. Пар хладагента, достигший состояния перегрева выходит из испарителя, после чего цикл вновь повторяется.

Схема холодильного контура чиллера состоит из

Компрессора

Четырех-ходового клапана реверсирования холодильного цикла, применяемого в тепловых насосах

Теплообменника конденсатора

Капиллярной трубки

Теплообменника испарителя.

Как в чиллере действует система автоматизированного управления

Чиллеры, принцип работы которых основаны на охлаждении либо нагревании жидкости, оснащены системой автоматизированного управления, которая состоит из контроллера, пульта управления, средств защиты. Контроллер предназначен для управления работой самого компрессора, вентиляторов конденсатора, четырех-ходового клапана, реверсирующего холодильный цикл.

В процессе повышения температуры воды в контуре системы кондиционирования, обязанностью контроллера является включение компрессора чиллера, охлаждающего воду в системе кондиционирования. При снижении температуры воды в гидравлическом контуре меньше значения температурной установки за минусом значения температурной разницы – дельты регулирования, встроенная система автоматизированного управления приостанавливает работу компрессора. Следовательно, контроллер обеспечивает высокую надежность работы компрессора, а также других элементов холодильного контура на протяжении всего времени эксплуатации установки.

Выбор чиллера является серьезным вопросом, требующим грамотного решения. Конечно, для выбора холодильного агрегата нет необходимости знать все нюансы и тонкости работы холодильной машины, но знание основных принципов работы агрегата поможет быстрее выбрать нужную модель.

Дешевле, однако создают малый напор воздуха, вследствие чего чиллер, оснащенный осевым вентилятором, размещают только на открытом месте (крыша, стена здания, в других подобных местах). Центробежными вентиляторами создаётся более сильный напор воздуха, значит чиллеры, оснащенные такими вентиляторами, вполне можно размещать внутри помещения, обеспечивая забор и выброс воздуха через воздуховоды.

Мы рассмотрели принцип действия чиллера. Оборудование, которое поставляет Компания Питер Холод можно встретить на предприятиях в таких регионах, как: Москва Санкт-Петербург Екатеринбург Ростов-на-Дону Казань Краснодар Нижний Новгород Волгоград Уфа Воронеж Челябинск Пенза Самара Тольятти Оренбург Тверь Сочи Белгород Пермь Смоленск Владимир Воскресенск Чебоксары Саратов Курск Новочеркасск Ярославль Черноголовка Ижевск Киров Астрахань Рязань Курган Сургут Ульяновск Тюмень Кострома Липецк Калуга в Марий Эл Димитровград Каменск-Уральский Жуковский Набережные Челны Ейск Иваново Нижневартовск Подольск Тамбов Армавир Магнитогорск в Мордовии Миасс Новороссийск Калмыкия Ханты-Мансийск Брянск Волжский Сызрань Нижний Тагил Таганрог Орел Ленинградская В Ленинградской области В лен области Железногорск Всеволожск Выборг Гатчина Кириши Сосновый бор Тихвин Череповец Волхов Великий Новгород В Новгородской области В Ненецком Петрозаводск В республике Коми Архангельск Вологда Мурманск Псков Великие Луги Воркута Сыктывкар Ухта Северодвинск Калининград В калининградской области Кондопога Сортавала В Ивановской области Обнинск В Липецкой области Электросталь Поволжье Дзержинск Саров Выкса В Нижегородской области Орск В Пермском краю Березники Нефтекамск Салават Альметьевск Бугульма Нижнекамск Жигулевск Балоково Энгельс в Татарстане В Пензенской области В Башкортостане В Ульяновской области В Чувашии Глазов Сарапул Дмитров Юг Владикавказ В Адыгее Анапа Туапсе Волгодонск Шахты в Калмыкии В Краснодарском крае Геленджик Ялта Сибирь Иркутск Барнаул Братск Усть-Илимск Кемерово Новокузнецк Красноярск Норильск Алтайский край Алтай В Красноярском крае Новосибирск Томск Омск В Бурятии Улан–Удэ в Тыве в Хакасии На Дальнем Востоке Благовещенск Белогорск Владивосток Уссурийск Хабаровск В Еврейской области Камчатский край Магадан в Сахе На Чукотске Южно-Сахалинск В Приморье В Хабаровском крае Якутск На Северном Кавказе Северный Кавказ В Чечне Ессентуки Кисловодск Минеральные воды Пятигорск В Карачаево-Черкесске Черкесск На Ставрополье В Дагестане в Ингушетии ив Северной Осетия Аланья В Кабардино-Балкарии На Урале Первоуральск Тобольск Нефтеюганск Озерск В Челябинской области В Ханты-Мансийском округе Новый Уренгой Ноябрьск Салехард В Ямало-Ненецком округе Удмуртск В Удмуртии

Что такое ? Чиллер – это холодильный агрегат, применяемый для охлаждения и нагревания жидких теплоносителей в центральных системах кондиционирования, в качестве которых могут выступать приточные установки или фанкойлы. В основном чиллер для охлаждения воды используют на производстве - охлаждают различное оборудование. У воды лучше характеристики по сравнению со смесью гликоля, поэтому работа на воде более эффективна.

Широкий диапазон мощности дает возможность использовать чиллер для охлаждения в помещениях различных размеров: от квартир и частных домов до офисов и гипермаркетов. Кроме того, он применяется в пищевой промышленности для и напитков, в спортивно-оздоровительной сфере – для охлаждения катков и ледовых площадок, в фармацевтике – для охлаждения медикаментов.

Существуют следующие основные типы чиллеров:

  • моноблок, воздушный конденсатор, гидромодуль и компрессор находятся в одном корпусе;
  • чиллер с выносным конденсатором на улицу (холодильный модуль располагается в помещении, а конденсатор выносится на улицу);
  • чиллер с водяным конденсатором (используют когда нужны минимальные размеры холодильного модуля в помещении и нет возможности использовать выносной конденсатор);
  • тепловой насос, с возможностью нагрева или охлаждения теплоносителя.

Принцип работы чиллера

Теоретической основой, на которой построен принцип работы холодильников, кондиционеров, холодильных установок, является второе начало термодинамики. Охлаждающий газ (фреон) в холодильных установках совершает так называемый обратный цикл Ренкина - разновидность обратного цикла Карно . При этом основная передача тепла основана не на сжатии или расширении цикла Карно, а на фазовых переходах - и конденсации.

Промышленный чиллер состоит из трех основных элементов: компрессора, конденсатора и испарителя. Основная задача испарителя – это отвод тепла от охлаждаемого объекта. С этой целью через него пропускаются вода и хладагент. Закипая, хладагент отбирает энергию у жидкости. В результате этого вода или любой другой теплоноситель охлаждаются, а холодильный агент – нагревается и переходит в газообразное состояние. После этого газообразный холодильный агент попадает в компрессор, где воздействует на обмотки электродвигателя компрессора, способствуя их охлаждению. Там же горячий пар сжимается, вновь нагреваясь до температуры в 80-90 ºС. Здесь же он смешивается с маслом от компрессора.

В нагретом состоянии фреон поступает в конденсатор, где разогретый холодильный агент охлаждается потоком холодного воздуха. Затем наступает завершающий цикл работы: хладагент из теплообменника попадает в переохладитель, где его температура снижается, в результате чего фреон переходит в жидкое состояние и подается в фильтр-осушитель. Там он избавляется от влаги. Следующим пунктом на пути движения хладагента является терморасширительный вентиль, в котором давление фреона понижается. После выхода из терморасширителя холодильный агенент представляет собой пар низкого давления в сочетании с жидкостью. Эта смесь подается в испаритель, где хладагент вновь закипает, превращаясь в пар и перегреваясь. Перегретый пар покидает испаритель, что является началом нового цикла.

Схема работы промышленного чиллера


# 1 Компрессор (Compressor)
Компрессор имеет две функции в холодильном цикле. Он сжимает и перемещает пары хладогента в чиллере. При сжатии паров происходит повышение давления и температуры. Далее сжатый газ поступает в где он охлаждается и превращается в жидкость, затем жидкость поступает в испаритель (при этом её давление и температура снижается), где она кипит, переходит в состояние газа, тем самым забирая тепло от воды или жидкости, которая проходит через испаритель чиллера. После этого пары хладагента поступают снова в компрессор для повторения цикла.

# 2 Конденсатор воздушного охлаждения (Air-Cooled Condenser)
Конденсатор с воздушным охлаждением представляет собой теплообменник, где тепло, поглощаемое хладагентом, выделяется в окружающее пространство. В конденсатор обычно поступает сжатый газ - фреон, который охлаждаются до и, конденсируясь, переходит в жидкую фазу. Центробежный или осевой вентилятор подают поток воздуха через конденсатор.

# 3 Реле высокого давления (High Pressure Limit)
Защищает систему от избыточного давления в контуре хладагента.

# 4 Манометр высокого давления (High Pressure Pressure Gauge)
Обеспечивает визуальную индикацию давления конденсации хладагента.

# 5 Жидкостной ресивер (Liquid Receiver)
Используется для хранения фреона в системе.

# 6 Фильтр-осушитель (Filter Drier)
Фильтр удаляет влагу, грязь, и другие инородные материалы из хладагента, который повредит холодильной системе и снизить эффективность.

# 7 Соленоиндный вентиль (Liquid Line Solenoid)
Соленоидный клапан - это просто электрически управляемый запорный кран. Он управляет потоком хладагента, который закрывается при остановке компрессора. Это предотвращает попадание жидккого хладагента в испаритель, что может вызвать гидроудар. Гидроудар может привести к серьезному повреждению компрессора. Клапан открывается, когда компрессор включен.

# 8 Смотровое стекло (Refrigerant Sight Glass)
Смотровое стекло помогает наблюдать поток жидкого хладагента. Пузырьки в потоке жидкости свидетельствуют о нехватке хладагента. Индикатор влажности обеспечивает предупреждение в том случае, если влага поступает в систему, указывая, что требуется техническое обслуживание. Зеленый индикатор не сигнализирует никакого содержания влаги. А желтые сигналы индикатора, что система загрязнена с влагой и требует технического обслуживания.

# 9 Терморегулирующий вентиль (Expansion Valve)
Терморегулирующий вентиль или ТРВ - это регулятор, положение регулирующего органа (иглы) которого обусловлено температурой в испарителе и задача которого заключается в регулировании количества хладагента, подаваемого в испаритель, в зависимости от перегрева паров хладагента на выходе из испарителя. Следовательно, в каждый момент времени он должен подавать в испаритель только такое количество хладагента, которое, с учетом текущих условий работы, может полностью испариться.

# 10 Горячий Перепускной клапан газа (Hot Gas Bypass Valve)
Hot Gas Bypass Valve (регуляторы производительности) используются для приведения производительности компрессора к фактической нагрузке на испаритель (устанавливаются в байпасную линию между сторонами низкого и высокого давления системы охлаждения). Перепускной клапан горячего газа (не входит в стандартную комплектацию чиллеров) предотвращает короткое циклирование компрессора путем модуляции мощности компрессора. При активации, клапан открывается и перепускает горячий газ холодильного агента с нагнетания в жидкостной поток хладагента, поступающего в испаритель. Это уменьшает эффективную пропускную способность системы.
# 11 Испаритель (Evaporator)
Испаритель это устройство, в котором жидкий хладагент кипит, поглощая тепло при испарении, у проходящего через него охлаждающей жидкости.

# 12 Манометр низкого давления фреона (Low Pressure Refrigerant Gauge)
Обеспечивает визуальную индикацию давления испарения хладагента.

# 13 Предельное Низкое давление хладагента (Low Refrigerant Pressure Limit)
Защищает систему от низкого давления в контуре хладагента, чтобы вода не замерзла в испарителе.

# 14 Насос охлаждающей жидкости (Coolant Pump)
Насос для циркуляции воды по охлаждаемому контуру

# 15 Ограничение температуры замерзания (Freezestat Limit)
Предотвращает замерзание жидкости в испарителе

# 16 Датчик температуры
Датчик, который показывает температуру воды в охлаждающем контуре

# 17 Хладагент манометр (Coolant Pressure Gauge)
Обеспечивает визуальную индикацию давления теплоносителя, подаваемого на оборудование.

# 18 Автоматический долив (Water Make-Up Solenoid)
Включается когда вода в емкости снижается ниже допустимого предела. Соленоидный клапан открывается и происходит долив в емкость от водопровода до нужного уровня. Далее клапан закрывается.

# 19 Резервуар Уровень поплавковый выключатель (Reservoir Level Float Switch)
Поплавковый выключатель. Открывается когда уровень воды в емкости снижается.

# 20 Датчик температуры 2 (From Process Sensor Probe)
Датчик температуры, который показывает температуру нагретой воды, которая возвращается от оборудования.

# 21 Реле протока (Evaporator Flow Switch)
Защищает испаритель от замерзания в нем воды (когда слишком низкий проток воды). Защищает насос от сухого хода. Сигнализирует отсутствие потока воды в чиллере.

# 22 Емкость (Reservoir)
Для избежания частых пусков компрессоров используют емкость увеличенного объема.

Чиллер с водяным охлаждением конденсатора отличается от воздушного - типом теплообменника (вместо трубчато-ребристого теплообменника с вентилятором используется кожухотрубный или пластинчатый, который охлаждается водой). Водяное охлаждение конденсатора осуществляется оборотной водой из сухого охладителя ( , драйкулера) или градирни. В целях экономии воды предпочтительным является вариант с установкой сухой градирни с водяным замкнутым контуром. Основные преимущества чиллера с водяным конденсатором: компактность; возможность внутреннего размещения в маленьком помещении.

Вопросы и ответы

Вопрос:

Можно ли чиллером охлаждать жидкость на проток более, чем на 5 градусов?

Чиллер можно использовать в замкнутой системе и поддерживать заданную температуру воды, например, 10 градусов, даже если возврат будет с температурой 40 градусов.

Есть чиллеры, которые охлаждают воду на проток. Это в основном используется для охдаждения и газирования напитков, лимонадов.

Что лучше чиллер или драйкулер?

Температура при использовании драйкулера зависит от температуры окружающей среды. Если, например, на улице будет +30, то хладоноситель будет с температурой +35…+40С. Драйкулер используют в основном в холодное время года для экономии электроэнергии. Чиллером можно получать заданную температуру в любое время года. Можно изготовить низкотемпературный чиллеры для получения температуры жидкости с отрицательной температурой до минус 70 С (хладоносителем при такой температуре является в основном спирт).

Какой чиллер лучше - с водяным или воздушным конденсатором?

Чиллер с водяным охлаждением имеет компактные размеры, поэтому могут размещаться в помещении и не выделяют тепло. Но для охлаждения конденсатора требуется холодная вода.

Чиллер с водяным конденсатором имеет более низкую стоимость, но может дополнительно потребоваться сухая градирня, если нет источника воды - водопровод или скважина.

В чем отличие чиллеров с тепловым насосом и без него?

Чиллер с тепловым насосом может работать на обогрев, т.е не только охлаждать хладоноситель, но и нагревать его. Необходимо учитывать, что с понижением температуры нагрев ухудшается. Наиболее эффективен нагрев когда температура опускается не ниже минус 5.

На какое расстояние можно выносить воздушный конденсатор?

Обычно конденсатор можно вынести на расстояние до 15 метров. При установке системы отделения масла выснок конденсатора возможен до 50 метров, при условии правильного подбора диаметра медных магистралей между чиллером и выносным конденсатором.

До какой минимальной температуре работает чиллер?

При установке системы зимнего пуска работа чиллера возможно до окружающей температуры минус 30…-40. А при установке вентиляторов арктического исполнения - до минус 55.

Виды и типы схем установок охлаждения жидкости (чиллеры)


Применяется в случае, если перепад температур ∆Т ж = (Т Нж – Т Кж) ≤ 7ºС (охлаждение технической и минеральной воды)

2. Схема охлаждения жидкости с использованием промежуточного хладоносителя и вторичного теплообменного аппарата.


Применяется в случае, если перепад температур ∆Т ж = (Т Нж – Т Кж) > 7ºС или для охлаждения пищевых продуктов, т.е. охлаждение во вторичном разборном теплообменнике.

Для этой схемы необходимо правильно определить расход промежуточного хладоносителя:

G х = G ж · n

G х – массовый расход промежуточного хладоносителя кг/ч

G ж – массовый расход охлаждаемой жидкости кг/ч

n – кратность циркуляции промежуточного хладоносителя

n =

где: C Рж – теплоёмкость охлаждаемой жидкости, кДж/(кг´ К)

C Рх – теплоёмкость промежуточного хладоносителя, кДж/(кг´ К)

∆Т х = (Т Нх – Т Кх) – температурный перепад промежуточного хладоносителя в испарителе

Понравилась статья? Поделиться с друзьями: