Кто ввел термин кибернетика. Кибернетик - это что за ученый? Современное понимание науки

Современное поколение стало свидетелем создания новейших разработок в сфере науки и техники. Буквально за триста лет наука продвинулась далеко вперёд.
Существует множество определений понятия кибернетика . И все они по — своему правильны. Так что такое кибернетика? Вообще считается, что кибернетика – это наука представляющая законы взаимодействия машин с живыми организмами. Но основное понятие кибернетики сводится к цели управления. Ведь управление – это всегда целенаправленный процесс, для которого и существует созданная система.

Так как процесс управления возможен только в организованной среде, необходимо создать для этого соответствующие условия и обозначить исполнить органы. Именно между ними будет происходить обмен информацией. Сигналы информации передаются через специальные датчики. Таким образом, обмен информацией — постоянный процесс. Понятие информации является одним из основных моментов в кибернетики. Она изучает процессы управления. Из этого следует, что науку кибернетика используют для передачи, обработки и даже хранения основной информации как в машинах, так и в живых организмах.

Медицинская кибернетик

В сферу кибернетики входит изучение основной структуры и принципов работы систем управления, способность воспринимать и перерабатывать необходимую информацию. Методика кибернетики основывается на использовании математического аппарата для построения математических моделей структур.

Ещё существует медицинская кибернетика , но это можно рассматривать как отдельный аспект этой области. Основной целью медицинской кибернетики является использование достижений в медицинской сфере для создания новейших технологий для эффективных способов лечения больных. Эти достижения во всю применяются в настоящее время. И многим известны случаи, когда больной орган был заменен аппаратом. Внедрение в медицинскую практику машинной диагностики позволяет не только правильно поставить диагноз, но и подобрать оптимальный индивидуальный курс лечения пациентов. В настоящее время разрабатывается система полной автоматизации управления медицинскими учреждениями.

Кибернетика - наука, изучающая общие принципы управления в объектах различной природы.

Несколько слов из истории кибернетики. Почти сто пятьдесят лет назад французский физик и математик Андре Мари Ампер закончил обширный труд - «Очерки по философии наук». В нем знаменитый ученый попытался привести в стройную систему все человеческие знания. Каждой из известных в то время наук было отведено свое место в системе. В рубрику за номером 83 Ампер поместил предполагаемую им науку, которая должна изучать способы управления обществом.

Ученый заимствовал ее название из греческого языка, в котором слово «кибернетес» означает «рулевой», «кормчий». Кибернетику Ампер сопроводил такими словами, звучащими весьма символично: «...et secura cives ut pace fruantur» («...и обеспечивает гражданам возможность наслаждаться миром»).

Долгое время после Ампера термин «кибернетика» был забыт. Но вот в 1948 году известный американский математик Норберт Винер опубликовал книгу под названием «Кибернетика, или Управление и связь в живых организмах и машинах». Она вызвала большой интерес ученых, хотя законы, которые Винер положил в основу кибернетики, были открыты и исследованы задолго до появления книги.

Таким образом, считается, что кибернетика возникла в конце 40-х гг., когда Н. Винер выдвинул идею о том, что системы управления в живых, неживых и искусственных системах обладают многими общими чертами. Установление аналогий обещало создание «общей теории управления», результаты которой могли бы использоваться в самых разнообразных системах. Идея получила подкрепление, когда появились компьютеры, способные единообразно решать самые разные задачи. Универсальность компьютерных вычислений наталкивала на справедливость гипотезы о существовании универсальных схем управления.

Эта гипотеза не выдержала проверку временем, но накопленные в кибернетике сведения о самых разных системах управления, общие принципы, которые частично все-таки удалось обнаружить, замена узкопрофессиональной точки зрения специалиста в какой-либо области на взгляд с позиции общности внешне разнородных объектов и систем принесли большую пользу.

Связь между понятиями «информатика» и «кибернетика» можно истолковать следующим образом. Суть информатики - в изучении информационных связей в различных системах, объединенных целями управления. А суть кибернетики - в изучении управления как информационного процесса.

На ранних этапах своего становления кибернетика включала в себя те задачи, которые сейчас решаются в информатике. Сегодня же общепринято, что кибернетические исследования заключаются в изучении общих свойств, присущих различным системам управления. Эти свойства могут проявляться и в живой природе, и в органическом мире, и в коллективах людей.



Основными в кибернетике являются понятия управления и информации.

Система управления (кибернетическая система) может рассматриваться как совокупность двух систем - объекта управления и управляющей системы. При этом управление есть процесс целенаправленного воздействия на объект управления, который обеспечивает требуемое поведение или работу. Из рисунка видно, что управляющая система воздействует на объект управления, подавая на него управляющие сигналы, содержащие информацию (управляющие решения) о том, как должен вести себя объект управления. Заметим, что для того, чтобы выработать управляющие решения, обеспечивающие достижение цели управления, управляющая система должна иметь информацию о состоянии внешней среды и о состоянии объекта управления. Канал (или каналы) передачи информации о состоянии внешней среды и о состоянии объекта управления носят название каналов цепей обратной связи . Наличие обратной связи, т.е. информации в ответ на сигнал, полученный управляемым объектом, является характерной особенностью всех управляющих систем.

Объект управления (будь то машина или автоматическая линия, предприятие или войсковое соединение, живая клетка, синтезирующая белок или мышца, текст, подлежащий переводу, или набор символов, преобразуемый в художественное произведение) и управляющее устройство (мозг и нервная ткань живого организма или управляющий автомат) обмениваются между собой информацией. Таким образом, процесс управления сопряжен с передачей, накоплением, хранением и переработкой информации, характеризующей управляемый объект, ход процесса, внешние условия, программу работы и т. д.

В различных системах могут быть различными по своей природе носители информации: звуковые, световые, механические, электрические, химические сигналы, документы, пленки. Однако вне зависимости от материального носителя информации процессы ее передачи подчиняются общим количественным закономерностям. Об этом вы узнаете в следующих параграфах.

Реальные системы управления отличаются большой сложностью и большим разнообразием. Они могут содержать несколько каналов управляющей информации и обратной связи. Свойства каналов и способы кодирования и переработки информации в них также отличаются большим разнообразием. По-разному формируются и управляющие решения. Тем не менее, общая модель, приведенная на рисунке, сохраняется для всех систем. Такая общность позволяет успешно описывать функционирование различных систем едиными формальными средствами. Однако выделение общих структурно-информационных свойств систем различной природы требует часто высоких профессиональных знаний в той области, которая соответствует содержательной природе исследуемых систем.

В кибернетике выделяют два основных направления исследований: теоретическую и техническую кибернетику. Теоретическая кибернетика занимается общими проблемами теории управления, вопросами передачи, защиты, хранения и использования информации в системах управления. Многие проблемы теоретической кибернетики изучаются в теоретической информатике. Специалисты, работающие в технической кибернетике, исследуют и проектируют различные технические управляющие системы, начиная от достаточно простых систем автоматического регулирования и управления до сложных автоматизированных систем управления - АСУ. В рамках технической кибернетики развивается и теория построения вычислительных машин, а также логические методы синтеза дискретных управляющих устройств. Для решения возникающих тут задач специалисты в области технической кибернетики используют модели алгебры логики, многозначных логик и теории автоматов.

Решающим в становлении кибернетики был бурный рост электронной автоматики и особенно появление быстродействующих вычислительных машин. Они открыли невиданные возможности в обработке информации и в моделировании систем управления.

На протяжении столетий трудами ученых закладывался фундамент, формировались принципиальные основы кибернетики, формировался методологический аппарат, включающий теорию информации, теорию алгоритмов, теорию вероятностей, математическую логику и многие другие разделы, как теоретической информатики, так и математики.

Выдающееся значение для ее развития имели труды К. Шеннона, Дж. Неймана, И. П. Павлова. Историки отмечают заслуги и таких выдающихся инженеров и математиков, как И. А. Вышнеградский, А. М. Ляпунов, А. Н. Колмогоров. В среде ученых считается, что в 1948 году состоялось не рождение, а крещение кибернетики - науки об управлении. Именно к этому времени с наибольшей остротой встал вопрос о повышении качества управления в нашем усложненном мире. И кибернетика дала специалистам самого разного профиля возможность применять точный научный анализ для решения проблем управления.

Сегодня достижениями кибернетики пользуются математики и физики, биологи, физиологи и психиатры, экономисты и философы, инженеры различных специальностей.

Перенос идей и моделей из одних областей в другие, общение между co6ой специалистов разного профиля на некотором едином языке кибернетики сделали свое дело. Появились кибернетические по своему духу модели в науках, доселе не знавших точных методов и расчетов. Возникли научные направления, получившие характерные названия: химическая кибернетика, юридическая кибернетика, техническая кибернетика и т.п. Все эти «кибернетики» изучают использование информации при управлении в том классе систем, который изучает соответствующая наука. Наиболее активно развивается техническая кибернетика.\ В ее состав входит теория автоматического управления, которая стала теоретическим фундаментом автоматики.

Заметное место в кибернетике занимает теория распознавания образов. Основная задача этой дисциплины - поиск решающих правил, с помощью которых можно было бы классифицировать многочисленные явления реальности, соотносить их с некоторыми эталонными классами. Распознавание образов - это пограничная наука между кибернетикой и искусственным интеллектом, так как поиск решающих правил чаще всего осуществляется путем обучения, а обучение, конечно, интеллектуальная процедура. В кибернетике выделяется даже специальная область исследований, получившая название обучение на примерах.

В последнее время объектом самого пристального изучения, самого детального исследования стал живой организм: сам человек как управляющая система высшего типа, те или иные функции которой инженеры и ученые стремятся воспроизвести в автоматах. Насколько принципы работы живых систем могут быть использованы в искусственных объектах? Ответ на этот вопрос ищут бионика и нейрокибернетика - пограничные науки между кибернетикой и биологией. Нейрокибернетика – наука, изучающая процессы переработки информации в нервной ткани животных и человека. Бионика – наука о том, как находки живой природы, реализованные в живых организмах, можно переносить в искусственные системы, создаваемые человеком.

Кибернетику также весьма интересуют равновесные состояния в различных системах и способы их достижения. Этими вопросами занимается гомеостатика, недавно возникшая и еще находящаяся в стадии оформления наука. Гомеостатика - наука о достижении равновесных состояний при наличии многих действующих одновременно факторов.

Быстро развивающиеся области кибернетики – экономическая кибернетика и социальная кибернетика, изучающие, соответственно, процессы управления, протекающие в экономике и человеческом обществе.

Кибернетику иногда рассматривают как прикладную информатику в области создания и использования автоматических или автоматизированных систем управления разной степени сложности, от управления отдельным объектом (станком, промышленной установкой, автомобилем и т. п.) до сложнейших систем управления целыми отраслями промышленности, банковскими системами, системами связи и даже сообществами людей.

Кибернетикой называют науку об управлении, связи и переработке информации.

Годом рождения современной кибернетики считается 1948 год, когда американский математик Н.Винер опубликовал труд «Кибернетика, или управление и связь в живых организмах и машинах». Кибернетика изучает общие свойства различных систем управления вне зависимости от их материальной основы. Эти свойства имеют место в живой природе, технике и в коллективах людей.

4.1. КИБЕРНЕТИКА И ДРУГИЕ НАУКИ

Читатель в общих чертах знает предмет многих естественных, общественных и технических наук, таких, как физика, математика, химия, биология, биофизика, история, электротехника и т.д. Среди этих наук особое положение занимает математика - наука, в которой изучаются пространственные формы и количественные отношения действительного мира. Исключительность этой науки в том, что она является инструментом познания в любой отрасли человеческого знания. Все науки, как уже отмечалось, развиваются, используя в той или иной степени математические закономерности. Подобное можно отнести и к кибернетике.

Винер увидел во многих разных науках общие вопросы и черты. Управление осуществляется в обществе, во многих технических системах, в живом организме. Информация перерабатывается людьми, вычислительными машинами, в биологических системах, она передается по проводной линии, радиоканалу, невральным структурам.

На базе многих наук и появилась кибернетика. Все перечислить невозможно, но несомненно влияние техники, математики (теория автоматического регулирования, математическая логика, теория информации и связи, вычислительные машины и др.) и физиологии (учение об условных рефлексах, принцип обратной афферентации, теория функциональных систем и др.).

Схематично место кибернетики в системе наук показано на рис. 4.1.

Рис. 4.1

Интересно отметить, что появление новых наук на базе комплекса существующих продолжается и сейчас. В качестве примера можно указать синергетику - область научных исследований, целью которых является выявление общих закономерностей в процессах образования, устойчивости и разрушения упорядоченных временных и пространственных структур в сложных системах различной природы (физической, химической, биологической и др.).

В развитие и создание кибернетики прямой или косвенный вклад внесли многие русские и советские ученые. Среди них физиологи и медики И.М. Сеченов (1829-1905), И.П. Павлов (1849 - 1936), А.А. Богданов (1873 - 1928), П.К. Анохин (1898-1974), В.В. Парин (1903- 1971), Н.М. Амосов (р. 1913), техники разных направлений и математики И.А. Вышне-градский (1831 - 1895), А.М.Ляпунов (1857- 1918), А.И. Берг (1893-1979), С.А. Лебедев (1902-1974), А.Н. Колмогоров 71903-1987), А.А. Харкевич (1904-1965), В.А. Котельников (р. 1908), Л.В. Канторович (1912-1986), В.М. Глушков (1923-1982) и др.

4.2. КИБЕРНЕТИЧЕСКИЕ СИСТЕМЫ

Кибернетической системой называют упорядоченную совокупность объектов (элементов системы), взаимодействующих и взаимосвязанных между собой, которые способны воспринимать, запоминать и перерабатывать информацию, а также обмениваться информацией.

Примерами кибернетических систем являются коллективы людей, мозг, вычислительные машины, автоматы. Соответственно этому элементами кибернетической системы могут быть объекты разной физической природы: человек, клетки мозга, блоки вычислительной машины и т.д.

Состояние элементов системы описывается некоторым множеством параметров, которые подразделяются на непрерывные, принимающие любые вещественные значения в некотором интервале, и дискретные, принимающие конечные множества значений. Так, например, температура тела человека - непрерывный параметр, а его пол - дискретный параметр. В общем случае состояние элемента кибернетической систе-

мы может изменяться и зависит как от самого элемента, так и от воздействия окружающих элементов и внешней среды.

Структура кибернетической системы определяется организацией связей между элементами системы и является функцией состояний самих элементов и внешних воздействий.

Функционирование кибернетической системы описывается тремя семействами функций: функциями, которые учитывают изменение состояний элементов системы, функциями, вызывающими изменения в структуре системы, в том числе вследствие внешнего воздействия, и функциями, определяющими сигналы, передаваемые системой за ее пределы. Для более полного описания системы следует еще учесть ее начальное состояние.

Кибернетические системы различаются по своей сложности, степени определенности и уровню организации.

Сложность системы зависит от количества элементов, ее составляющих, от сложности структуры и разнообразия внутренних связей. Существуют сложные кибернетические системы, которые однако, могут быть детально известны, так как являются созданием человека. Вместе с тем такие сложные кибернетические системы, как биологические, благодаря многочисленным и неясным многообразным связям между множеством элементов во многих случаях детальному описанию не поддаются. При исследовании сложных систем имеет место и процесс, обратный разделению системы на элементы: системы представляются в виде укрупненных блоков, каждый из которых сам является системой. Таким образом, сложные системы могут состоять из более простых. Система более высокого уровня представляет собой объединение подсистем более низкого уровня, т.е. организация системы имеет иерархический характер.

Между уровнями иерархии могут возникать взаимосвязи. Само понятие элементов в этом смысле является относительным. В различных случаях одна и та же часть системы может быть и элементом, и блоком, и всей системой. Так, например, при изучении функций мозга его можно рассматривать как элемент, тогда как при изучении работы мозга в связи с его внутренним строением за элемент следует принимать отдельные нейроны. В свою очередь, нейрон будет кибернетической системой при изучении его с учетом клеточного строения.

Кибернетические системы делятся на непрерывные и дискретные. В непрерывных системах все сигналы, циркулирующие в системе, и состояния элементов задаются непрерывными параметрами, в дискретных - дискретными. Существуют, однако, и смешанные (гибридные)

системы, в которых имеются параметры обоих видов. Деление систем на непрерывные и дискретные является условным и определяется необходимой степенью точности исследуемого процесса и техническими и математическими удобствами. Некоторые процессы или величины, имеющие дискретную природу, например электрический ток (дискретность электрического заряда: не может быть заряд меньше, чем заряд электрона), удобно описывать непрерывными величинами. В других случаях, наоборот, непрерывный процесс имеет смысл описывать дискретными параметрами. Так, например, непрерывную выделительную функцию почек удобно описывать дискретной пятибалльной характеристикой. Кроме того, при любых физических измерениях, производя их через определенные интервалы времени, фактически получают набор дискретных величин. Все сказанное свидетельствует, что дискретные системы являются более универсальными, чем непрерывные.

При исследовании непрерывных систем применяют аппарат дифференциальных уравнений, при исследовании дискретных систем - теорию алгоритмов.

В кибернетике и технике принято деление систем на детерминированные и вероятностные. Детерминированной называют такую систему, элементы которой взаимодействуют определенным образом. Состояние и поведение такой системы предсказывается однозначно и описывается однозначными функциями. Поведение вероятностных систем можно определить с некоторой долей достоверности, так как элементы системы находятся под влиянием столь большого числа воздействий, что взаимодействие всех элементов не может быть описано точно. Один из примеров - реакция организма на воздействие физическими факторами (силовое, электрическое, тепловое и др.); она имеет вероятностный характер.

Система называется замкнутой, если ее элементы обмениваются сигналами только между собой. Незамкнутые, или открытые, системы обязательно обмениваются сигналами с внешней средой.

Для восприятия сигналов из внешней среды и передачи их внутрь системы всякая открытая система обладает рецепторами (датчиками или преобразователями). У животных, как у кибернетической системы, реценторами являются органы чувств - осязание, зрение, слух и т.п., у автоматов - датчики: тензометрические, фотоэлектрические, индукционные и т.д. (см. 21.3).

Во внешнюю среду сигналы передаются посредством исполнительных механизмов, называемых эффекторами. Речь, руки, мимика лица являются для человека - кибернетической системы - эффекторами.

Рецептором для автомата с газированной водой является кнопка или приемник монет, эффектором - выдача газированной воды.

Сложные кибернетичечские системы обладают характерным свойством - способностью накапливать информацию, которая впоследствии может быть использована при работе управляющей системы. Это свойство называется, по аналогии с подобным свойством человеческого мозга, памятью. Запоминание в кибернетических системах осуществляется двумя способами: во-первых, вследствие изменения состояния элементов системы, во-вторых, в результате изменения ее структуры.

4.3. ЭЛЕМЕНТЫ ТЕОРИИ ИНФОРМАЦИИ

Центральное место в кибернетике занимает информация. Этот термин уже неоднократно встречался в курсе без специального разъяснения как общепонятным. Слово «информация» 1 означает, по современным представлениям, совокупность сведений, данных, передачу сообщений.

Источником информации может служить всякое явление или событие, однако оно должно иметь смысл и являться сигналом к тому или иному действию. Иногда говорят, что информация - система сведений об окружающем нас мире, которые получает человек в результате наблюдения и общения с другими людьми. Люди получают информацию, когда ощущают боль, голод, холод, видят, слышат, разговаривают с другими людьми, читают книги и т.п.

Однако представление о том, что информацию получает только человек, является субъективным. На самом деле это понятие имеет более широкий смысл. Так, непрерывное регулирование работы внутренних органов животных и системы развития растений связано с передачей информации.

Не следует вдаваться и в другую крайность, полагая, что всякое отражение событий в мире является информацией. Вряд ли можно считать, что понижение температуры в горах является для скал информацией о наступлении зимы.

Передача, получение и переработка информации свойственны системам, достаточно сложно организованным, специфическая особенность которых заключается в наличии процессов управления. Замеча-

Informatio (лат.) - разъяснение, осведомление.

тельной особенностью информации является то, что она уничтожает незнание чего-либо, уменьшает неопределенность ситуации.

Научный подход к изучению информации был вызван «информационным взрывом» - лавинообразным потоком информации в результате бурного развития науки и техники в середине XX в.

Понятие информации в кибернетике играет такую же важную роль, как понятие энергии и массы в физике. Раздел кибернетики, посвященный вопросам сбора, передачи, хранения, переработки и вычисления информации, получил название теории информации. Рассмотрим кратко элементы этой теории.

Передача информации осуществляется по каналам связи в виде сигналов, вырабатываемых органами кибернетической системы. Каналом связи называется среда, по которой передаются сигналы. При устном разговоре сигналом является речь, а каналом связи - воздух, при радиопередаче музыки сигналом является звук, а каналами связи - электромагнитное поле и воздух.

Физическим носителем сигнала могут быть всевозможные виды материи, которые при передаче одного сигнала могут чередоваться. Например, при радиопередаче мысль, выражаемая словом, переданная за счет биоэлектрических импульсов голосовым мышцам, вызывая их сокращения, создает звуковой образ, который в результате колебания мембраны в микрофоне преобразуется в электрический импульс - сигнал, передаваемый на расстояние. При этом сигналы должны удовлетворять требованиям изоморфизма. Под изоморфизмом понимают такое соответствие физически различных явлений, при котором сохраняется, не искажается содержание передаваемого сообщения.

Нарушение изоморфизма приводит к искажению информации. Искажение сигналов как вследствие нарушения изоморфизма, так и в результате внешних помех называют шумом.

В зависимости от значения передаваемых сигналов их делят на осведомительные, сообщающие какую-либо информацию, и исполнительные, которые заключают какую-либо команду к действию. Различают сигналы дискретные и непрерывные. Примером дискретного сигнала является передача азбукой Морзе или передача цифр импульсами тока, примером непрерывного - изменение напряжения в цепи, соответствующее изменению температуры.

Всякое сообщение состоит из комбинации простых сигналов определенной физической природы. Полный набор таких сигналов называют алфавитом, один сигнал - буквой алфавита. Для передачи сообщения его следует описать с помощью какого-либо алфавита, иначе говоря, за-

кодировать. Кодированием называется описание какого-либо сообщения с помощью определенного алфавита, т.е. установление однозначного соответствия между параметрами, характеризующими сигнал, и информацией. Перевод этого сообщения на другой алфавит называется перекодированием, расшифровка сообщения - декодированием.

Для передачи сообщений в хозяйственной и научной жизни кодирование производится человеком. Однако природой созданы естественные способы кодирования. Эти способы представляют огромный интерес для науки, например изучение способа кодирования наследственной информации о взрослом организме в зародышевой клетке. Применение кодирования позволяет использовать небольшой алфавит для передачи огромной информации. Оказалось, что любую информацию можно закодировать с помощью двух знаков (0,1). Такой код называется двоичным.

Передача любого сигнала связана с затратой энергии, однако количество передаваемой информации и тем более ее смысл не зависят от энергии сигнала. Более того, очень часто сигнал малой энергии передает сообщение, в результате которого может быть вызван процесс, связанный с огромной затратой энергии. Например, атомный взрыв может быть вызван нажатием кнопки-включателя соответствующего устройства, спокойная информация о чьем-либо неприглядном поступке может вызвать взрыв негодования.

В кибернетике неважно, какая энергия затрачена для передачи информации, но существенно, какое количество информации будет передано или можно передать по тому или иному каналу связи. Для количественного подсчета информации следует отвлечься от смысла сообщения, аналогично тому, как для решения арифметического примера отвлекаются от конкретных предметов. Складывая, например 2 и 3, получаем 5, при этом несущественно, какие предметы складываем: яблоки, ракеты или звезды.

Как же вычисляется количество информации? Уже отмечалось, что информация тогда имеет смысл, когда она уменьшает степень незнания, т.е. процесс извлечения информации связан с увеличением определенности наших сведений об объекте. Сообщение несет информацию, если из совокупности реально возможных событий указывается некоторое определенное.

Например, читая историю болезни, врач получает информацию о болезнях данного пациента: из всего многообразия различных заболеваний выделены только те, которые перенес данный больной. Сообщение об уже известном не несет информации; так, для грамотного человека

не содержит информации утверждение, что после 15-го числа месяца наступает 16-е.

Чем больше различных возможностей имеет событие, тем большую информацию о нем несет сообщение. Так, при однократном бросании игральной кости (6 граней) получают бо льшую информацию, чем при бросании монеты (2 стороны), ибо первый случай имеет большее число равновозможных исходов, чем второй. Говорят, что количество информации изменяется в отношении, обратном вероятности.

Так как мерой неопределенности каких-либо событий является вероятность, то следует предположить, что количественная оценка информации связана с основными представлениями теории вероятностей. Действительно, современный метод подсчета информации основан на вероятностном подходе при рассмотрении систем связи и кодирования сообщений.

Рассмотрим метод подсчета количества информации, содержащейся в одном сообщении, предложенный Шенноном и используемый в современной теории информации.

Мера количества информации может быть найдена как изменение степени неопределенности в ожидании некоторого события. Предположим, что имеется k равновероятных исходов события. Тогда очевидно, что степень неопределенности одного события зависит от k: в случае k = 1 предсказание события является достоверным, т.е. степень неопределенности равна нулю; в случае большого k предсказать событие трудно, степень неопределенности велика.

Следовательно, искомая функция f (k) (мера количества информации или изменение степени неопределенности) должна быть равна нулю при k = 1 и при возрастании k возрастать.

Кроме того, функция f должна удовлетворять еще одному условию. Допустим, что проводятся два независимых опыта, один из них имеет k равновероятных исходов, а другой - l. Естественно предположить, что неопределенность f (kl) совместного появления некоторого сочетания событий первого и второго опытов больше f (k) и f (l) и равна сумме неопределенностей исходов каждого из опытов:

В левой части формулы представлена функция f (kl) от произведения kl, равного числу возможных пар сочетаний исходов первого и второго опытов. Формуле (4.1) соответствует логарифмическая функция f (k) - log. k.

Кроме того, полученная функция удовлетворяет условиям log a 1 = 0 и возрастает при увеличении k.

Так как переход от одной системы логарифмов к другой в зависимости от основания сводится к умножению функции log a k на постоянный множитель, то основание логарифмов решающей роли не играет и скажется лишь на выборе единиц количества информации.

Итак, будем считать функцию log a k мерой неопределенности (количество информации) при k равновероятных исходах. Вероятность каждого исхода (события) равна р = р 1 = р 2 = р 3 = ... = p k = 1/k Так как неопределенности различных событий суммируются, то неопределенность каждого отдельного исхода равна

В опыте, имеющем исходы различной вероятности р 1 , р 2 , ... p k мера неопределенности каждого отдельного исхода запишется по выражению

(4.3):

а мера неопределенности всего опыта - как сумма этих неопределенностей:

Это среднее значение логарифма вероятности. По аналогии с формулой Больцмана [см. (12.20)], Н называется энтропией или информационной энтропией. Эту величину можно рассматривать как меру информации.

Исследуя на экстремум (4.4), находим, что самой большой неопределенностью обладает событие с равновероятными исходами. Испытание в этом случае дает наибольшую информацию:

В частном случае двух равновозможных событий количество информации, полученной при сообщении, равно

Для выбора единицы количества информации положим а - 2, тогда из (4.6) имеем

H= loga 2 = 1.

Это количество информации принимается за бит (бит - информация, содержащаяся в сообщении об одном из двух равновероятных событий). Принимая в (4.5) а = 2, получаем, что количество информации

выражается в битах.

Посчитаем информацию, полученную при выпадании 1 в случае бросания игральной кости. Используя (4.7), имеем

Понятие информации является одним из важнейших в кибернетике, так как всякий процесс управления связан с получением, накоплением и передачей информации. Отражая общие свойства материального мира, понятие информации выступает как философская категория.

Информационные процессы имеют место при работе любых систем управления - от процессов передачи наследственных признаков до процессов общения между людьми и машинами. Аналогично тому как посредством энергии в физике определяется мера превращения одной формы движения в другую, в кибернетике информация является мерой процессов отражения материального мира.

Как уже отмечалось, информация передается по каналам связи с помощью сигналов. Информация, воспринятая от источника приемными элементами (органами чувств, микрофонами, фотоэлементами и т.п.), преобразуется кодирующим устройством в форму, удобную для передачи сигнала, например в электрический сигнал, и передается по каналу связи к приемнику, в котором информация декодируется, например в звук, и сообщается слушателю. Общая схема системы передачи информации изображена на рис. 4.2.

Рис. 4.2

В заключение отметим, что некоторые количественные выражения теории информации пока еще не нашли приложения в медицинской кибернетике. Это обстоятельство обусловлено общим, пока еще в значительной степени качественным характером медицины.

4.4. УПРАВЛЕНИЕ И РЕГУЛИРОВАНИЕ

Для того чтобы происходило целенаправленное изменение поведения кибернетической системы, необходимо управление.

Управление - это осуществление воздействия на кибернетическую систему (объект) в соответствии с имеющейся программой или целью ее функционирования. Говоря кратко, управление - это воздействие на объект для достижения заданной цели.

Цели управления могут быть различными. В простейшей случае это, например, просто поддержание постоянным какого-либо параметра (постоянной влажности в помещении, температуры). В более сложных кибернетических системах целью управления являются задачи приспособления к изменяющимся условиям, например приспособление к изменяющейся среде обитания биологического индивидуума.

Установлено, что схема управления объектами различной природы является общей как для органического мира, включая механизмы управления в живом организме и механизмы биологической эволюции, так и для неорганического мира, вплоть до электронно-вычислительных машин и управления космическими кораблями.

Это сходство позволяет проводить аналогии между живыми системами, прошедшими усовершенствование в течение длительного процесса эволюции, и техническими устройствами, более простыми и менее совершенными.

Исследование биологических систем управления и сравнение их с техническими системами, с одной стороны, позволяют найти новые принципы для создания более сложных технических устройств, а с другой стороны, понять принципы управления, которые лежат в основе биологических объектов и процессов. Первая сторона вопроса является содержанием научного направления, получившего название «бионика».

Во всякой системе управления следует различать управляющий орган и объект управления, а также линии связи (каналы связи) между ними. Управляющий орган является весьма важной частью кибернетической системы. Он представляет собой управлющую систему, которая перерабатывает полученную информацию и вырабатывает управляю-

щие воздействия. Процессы переработки информации происходят в различных естественных и искусственных управляющих системах. К ним относятся мышление, переработка информации в автоматизированных системах, изменение наследственной информации в процессе эволюции биологических видов и т.п. Управляющие воздействия передаются через соответствующие эффекторы на объект управления. Связь осуществляется за счет физических процессов, несущих информацию и представляющих собой сигнал. Получив сигнал, объект управления перейдет в соответствующее состояние.

Наиболее интересным является такое управление, при котором операции, обеспечивающие достижения заданной цели управления, выполняются системой, функционирующей без вмешательства человека в соответствии с заранее заданным алгоритмом. Такой вариант называется автоматическим управлением.

Разновидностью автоматического управления является автоматическое регулирование. Этот термин используют в тех случаях, когда цель управления - автоматическое поддержание постоянства или изменения по требуемому закону некоторой физической величины объекта управления (регулирования). Управляющий орган при этом может быть назван регулятором.

Если управляющая система не получает или не учитывает информацию от объекта управления, она называется разомкнутой. Схематично такое управление показано на рис. 4.3 с указанием канала (линии) прямой связи. Такое управление реализуется в светофоре, генетической системе, ЭВМ.

В режиме разомкнутой системы осуществляется автоматическое управление (регулирование) по возмущению. Поясним это примером устройства, автоматически поддерживающего комфортные температурные условия в помещении (рис. 4.4). Здесь объектом регулирования является кондиционер. Возмущение (температура наружного воздуха) воздействует на регулятор (специальный термометр) и оказывает влияние на температуру воздуха в помещении. Термометр в зависимости от возмущения подает сигнал кондиционеру для включения его в работу либо в режиме нагревающего устройства, либо охлаждающего.

Воздух соответствующей температуры поступает в помещение. Существенно,

что в этой системе нагревание или охлаждение воздуха в помещении зависит от температуры окружающей среды, а не от температуры воздуха в помещении.

Более распространенными и эффективными являются системы управления с обратной связью - замкнутые системы управления (рис. 4.5). Управляющий орган при этом перерабатывает информацию, полученную как извне от других объектов си-

стемы, так и от объекта управления по линии обратной связи.

Обратной связью называют передачу воздействия или информации с выхода системы (элемента) на ее вход, в частности воздействие объекта управления на управляющий орган.

Различают положительную и отрицательную обратную связь. При положительной обратной связи результаты процесса стремятся усилить его. В технических устройствах положительная обратная связь способствует переходу системы в другое равновесное состояние или вызывает лавинный процесс.

Отрицательная обратная связь препятствует развитию, изменению процесса и стабилизирует его. Отрицательная обратная связь используется в замкнутых системах управления.

В качестве технической системы с отрицательной обратной связью рассмотрим терморегулятор термостата, в котором используется контактный термометр (рис. 4.6).

При температуре, ниже заданной, ртутный столбик в термометре разрывает контакт в цепи реле, оно включает нагреватель, и температура повышается. При температуре выше нормы ртутный столбик замыкает цепь реле, и нагреватель отключается. Рассмотренная система позволяет поддерживать в термостате температуру в определенном интервале. Этот пример иллюстрирует автоматическое (регулирование) по отклонению.

К кибернетическим системам с отрицательной обратной связью (замкнутая система управления) относятся самоуправляющиеся

(саморегулируемые) системы. Самоуправляющейся системой является, например, организм животного, в котором самостоятельно поддерживаются постоянный состав крови, температура и другие параметры. Система, состоящая из группы животных и хищников, питающихся ими, например зайцы и волки, также является саморегулируемой. Увеличение поголовья волков приводит к уменьшению количества пищи (зайцев), это, в свою очередь, приводит к уменьшению количества волков, отсюда увеличивается поголовье зайцев, и т.д. В результате, если отвлечься от других факторов (отстрел волков, засуха и пр.), численность волков и зайцев поддерживается в этой системе на некотором определенном уровне.

Схему самоуправляющейся системы такого типа можно представить состоящей из следующих частей (рис. 4.7): объекта управления, который воздействует на внешнюю среду, некоего чувствительного элемента, который получает информацию как от внешней среды, так и в результате изменений, происходящих с объектом управления, и управляющего органа (регулятора). По каналу 1 в регулятор поступает первичная осведомляющая информация, по каналу 2 - управляющая информация

Рис. 4.7

к объекту управления. Через внешнюю среду и чувствительный элемент осуществляется обратная связь.

Изучение самоуправляющихся систем представляет особый интерес для физиологии и биологии.

Существуют системы оптимального управления, целью которых является поддержание экстремального (минимального или максимального) значения некоторой величины в зависимости от внешних условий и управляющих сигналов системы.

Простейшим примером такого регулирования может служить устройство кондиционера, создающего температуру в соответствии с влажностью воздуха. Оптимальная система управления уместна и в тех случаях, когда функция системы сводится к сохранению регулируемых параметров в максимальном или минимальном значении при изменении нерегулируемых параметров.

Более подробно вопросы управления рассматриваются в специальной теории управляющих систем. Основными принципами, положенными в ее основу, являются обратная связь и многоступенчатость управления. Обратная связь позволяет кибернетической системе учитывать реальные обстоятельства и согласовывать их с необходимым поведением. Многоступенчатая схема управления обусловливает надежность и устойчивость кибернетических систем.

4.5. МОДЕЛИРОВАНИЕ

В различных областях знаний для исследования реальных систем и процессов используются модели.

Модель - это объект любой природы, умозрительный или материально реализованный, который воспроизводит явление, процесс или систему с целью их исследования или изучения. Метод исследования явлений, процессов и систем, основанный на построении и изучении их моделей, получил название моделирования.

Таким образом, под моделированием в настоящее время понимают не только предметное, копирующее моделирование типа создания модели планера, но и научный метод исследования и познания глубокой сущности явления и объектов. Основой моделирования является единство материального мира и атрибутов материи - пространства и времени, а также принципов движения материи.

В кибернетике моделирование - основной метод научного познания. Это обусловлено абстрактностью кибернетики, общностью струк-

туры кибернетических систем и систем управления разной природы. По существу схемы, приведенные на рис. 4.3-4.7, являются простыми моделями разных систем управления. Вопросы моделирования в этом параграфе рассматривают шире рамок кибернетики, учитывая универсальность этого метода и медико-биологическую направленность интересов читателя.

Остановимся на основных, наиболее существенных разновидностях моделей: геометрические, биологические, физические (физико-химические) и математические.

Геометрические модели - наиболее простая их разновидность. Это внешнее копирование оригинала. Муляжи, используемые в преподавании анатомии, биологии и физиологии, являются геометрическими моделями. В быту геометрические модели часто используются с познавательной или декоративно-развлекательной целью (модели автомашин, железной дороги, зданий, куклы и т.п.).

Создание биологических (физиологических) моделей основано на воспроизведении в лабораторных условиях определенных состояний, например заболевания у подопытных животных. В эксперименте изучаются механизмы возникновения состояния, его течение, способы воздействия на организм для его изменения. К таким моделям относят искусственно вызванные инфекционные процессы, гипертрофирование органов, генетические нарушения, злокачественные новообразования, искусственно созданные неврозы и различные эмоциональные состояния.

Для создания этих моделей на подопытный организм производятся самые различные воздействия: заражение микробами, введение гормонов, изменение состава пищи, воздействие на периферическую нервную систему, изменение условий и среды обитаний и пр.

Биологические модели важны для биологии, физиологии, фармакологии и генетики.

Создание физических и физико-химических моделей основано на воспроизведении физическими и химическими способами биологических структур, функций или процессов. Физико-химические модели более идеализированы, чем биологические, и представляют собой далекое подобие моделируемого биологического объекта.

В качестве примера одной из первых физико-химических моделей можно привести модель роста живой клетки (1867), в которой рост имитировался выращиванием кристаллов CuSO 4 в водном растворе Си и электрические [см. (18.13)] колебания или апериодический разряд конденсатора [см. (18.17)], поглощение света веществом [(см. ф. (29.6)] и закон радиоактивного распада [см. (32.8)]. В этой аналогичности дифференциальных уравнений, относящихся к различным явлениям, можно усмотреть единство природы. Такая особенность позволяет использовать аналогии при математическом моделировании, а соответствующие модел и называют предметно-математическими моделями прямой аналогии.

Изучение явлений с помощью математических моделей подразделяется на четыре этапа.

Первый этап состоит в выделении объектов моделирования и формулировании законов, их связывающих. Он завершается записью в математических терминах представлений о связях между объектами модели.

На втором этапе происходит исследование математических задач, вытекающих из математической модели. Целью этого этапа является решение прямой задачи, т.е. получение данных, которые можно сравнить с результатами опыта или наблюдений. Для решения поставленных задач используются математический аппарат и вычислительная техника, позволяющая получить количественную информацию.

Третий этап позволяет выяснить, насколько выдвинутая гипотетическая модель удовлетворяет критерию практики. Решение этого вопроса связано с соответствием теоретических следствий экспериментальным результатам. В рамках этого этапа часто решается обратная задача, в которой определяются не известные ранее некоторые характеристики модели по результатам сопоставления выходной информации с результатами наблюдений.

Предложенная модель непригодна, если ни при каких значениях ее характеристик нельзя согласовать выходную информацию с экспериментом.

В четвертый этап входит анализ модели в результате накопления данных о ней и ее модернизация.

В зависимости от характера моделей их условно делят на феноменологические и структурные.

Феноменологические (функциональные) модели отражают временные и причинно-следственные отношения между параметрами, характеризующими функции биологического объекта без учета его структуры.

Объект рассматривается как «черный ящик» - система, в которой внешнему наблюдателю доступны лишь входные и выходные величины, а внутренняя структура неизвестна (рис. 4.8). Метод «черного ящика»

широко применяют для решения задач моделирования сложных кибернетических систем в тех случаях, когда интерес представляет поведение системы. Так, например, учитывая сложную «конструкцию» мозга человека и риск прямого приборного внедрения в его структуры, резонно исследовать мозг как «черный ящик»). Это можно делать, исследуя умственные способности человека, его реакцию на звук, свет и т.д.

Структурные модели строятся с учетом структуры объекта, отражающей его иерархические уровни.

При этом к структуре относят частные функции отдельных подсистем. Такие модели лучше выражают сущность биологических систем, но сложны для вычислений.

Составление моделей проводится по определенной схеме. Вначале формулируется цель моделирования, затем высказывается гипотеза, представляющая качественное описание системы, выбираются тип модели и математические методы ее описания в зависимости от цели и рода информации.

Заключительный этап состоит в создании модели и сравнении ее с системой-объектом с целью идентификации.

4.6. ПОНЯТИЕ О БИОЛОГИЧЕСКОЙ И МЕДИЦИНСКОЙ КИБЕРНЕТИКЕ

Биологическая кибернетика представляет собой научное направление, в котором идеи, методы и технические средства кибернетики применяются к рассмотрению задач биологии и физиологии.

Биологическая кибернетика может быть представлена теоретической и практической частью. Основной задачей теоретической биологической кибернетики является изучение общих вопросов управления, хранения, переработки и передачи информации в живых системах. Одним из важнейших методов практической биологической кибернетики является метод моделирования - моделирование структуры и поведения биологических систем. В развитие этого метода биологическая кибернетика включает и вопросы конструирования искусственных систем, воспроизводящих деятельность отдельных органов, их внутренние связи и внешние взаимодействия. В этом направлении биологическая кибернетика смыкается с медицинской.

Медицинская кибернетика является научным направлением, связанным с использованием идей, методов и технических средств кибернетики в медицине и здравоохранении. Условно медицинскую кибернетику можно представить следующими группами.

1. Вычислительная диагностика заболеваний. Эта часть в основном связана с использованием вычислительных машин для постановки диагноза.

Структура любой диагностической системы состоит из медицинской памяти (совокупный медицинский опыт для данной группы заболеваний) и логического устройства, позволяющего сопоставить симптомы, обнаруженные у больного опросом и лабораторным обследованием, с имеющимся медицинским опытом. Этой же структуре следует и диагностическая вычислительная машина.

Первым шагом является разработка методик формального описания состояния здоровья пациента, проводят тщательный анализ по уточнению клинических параметров и признаков, используемых в диагностике. Отбирают главным образом те признаки, которые допускают количественную оценку.

Кроме количественного выражения физиологических, биохимических и других характеристик больного для вычислительной диагностики необходимы сведения о частоте (априорной вероятности) клинических синдромов и диагностических признаков, об их классификации, зависимости, об оценке диагностической эффективности признаков и т.п. Все эти данные хранятся в памяти машины.

Следующим шагом является выбор алгоритма. Машина сопоставляет симптомы больного с данными, заложенными у нее в памяти.

Логика вычислительной диагностики соответствует логике врача, устанавливающего диагноз: совокупность симптомов сопоставляется с предшествующим опытом медицины.

Новую (неизвестную) болезнь машина не установит. Врач, встретивший неизвестное заболевание, сможет описать его признаки. Подробности такого заболевания можно установить, лишь проводя специальные исследования. ЭВМ в таких исследованиях сможет играть вспомогательную роль.

2. Кибернетический подход к лечебному процессу. Установив диагноз, врач назначает и проводит лечение, которое, как правило, не сводится к одноразовому воздействию. Это сложный процесс, во время которого врач вновь и вновь получает медико-биологическую информацию о больном, анализирует эту информацию и в соответствии с ней уточняет, изменяет, прекращает или продолжает лечебное воздействие.

Для кибернетических систем характерно целенаправленное воздействие управляющей системы на объект управления (см. 4.4).

Врач управляет больным, система врач-больной является кибернетической, поэтому кибернетический подход возможен и к лечебному процессу. Однако, несмотря на такие возможности, пока еще проникновение идей, методов и технических средств кибернетики в эту, главнейшую, часть медицины достаточно скромно.

В настоящее время кибернетический подход к лечебному процессу облегчает работу врача, позволяет эффективнее проводить лечение тяжелобольных, своевременно принять меры при осложнениях во время операции, разработать и контролировать процесс лечения медикаментами, создавать биоуправляемые протезы.

Кратко остановимся на возможностях применения такого подхода.

Контроль за состоянием организма человека необходим во многих областях человеческой деятельности (спортивной, производственной, учебной, военной), но особенно важен он в стрессовых ситуациях или в таких лечебных условиях, как, например, хирургические вмешательства с применением искусственного кровообращения, дыхания, при реанимации, в состоянии наркоза и т.п.

Для этих целей создаются информационные системы оперативного врачебного контроля (ИСОВК), которые осуществляют съем медико-биологической информации, автоматическое распознавание функционального состояния пациента, фиксацию нарушений в деятельности организма, диагностирование заболевания, управление устройствами, регулирующими жизненно важные функции.

В задачи оперативного врачебного контроля входят наблюдение за состоянием тяжелобольных с помощью систем слежения (мониторных систем), наблюдение за состоянием здоровых людей, находящихся в экстремальных условиях (стрессовые состояния, невесомость, гипербарические условия, среда с пониженным содержанием кислорода и т.п.).

Реализация принципа интенсивного ухода возможна в результате создания комплекса, позволяющего автоматически непрерывно контролировать состояние больного и сообщать о его изменениях.

Особенно важно получать быстрые и точные сведения о состоянии больного во время операции. В процессе операции фиксируется огромное количество (около 1000) различных параметров, характеризующих состояние больного. Проанализировать и проследить за таким количеством параметров в чрезвычайно короткие сроки для врача практически невозможно. В этих случаях на помощь приходит ЭВМ, тем более что при использовании ЭВМ в нее можно заранее вложить предшествующие

записи из истории болезни, сведения о наличии медикаментов, указания мер, которые необходимо предпринять в критических ситуациях.

Общие данные об оперируемых больных вводятся в ЭВМ заранее. Ввод данных о текущем состоянии производится с момента поступления больного в операционную. Кроме сведений о состоянии больного вводятся сведения о времени, виде и дозе анестезии и медикаментов и начинается непрерывная фиксация медико-биологических параметров. В результате, если какие-либо показатели будут выходить за критические значения, ЭВМ сообщит в виде звуковых или световых сигналов об опасности, выдаст на регистрирующее устройство информацию, объясняющую причины тревоги, и рекомендации по их устранению.

Еще одной возможностью применения кибернетики в медицине является математическое моделирование лечебного процесса, которое может служить основой для расчета оптимальных лечебных воздействий. Так, например, удается рассчитать процесс введения лекарственного препарата в организм больного, с тем чтобы вызвать наилучший лечебный эффект.

Кибернетический подход реализуется при создании сложных протезов, заменяющих некоторые органы. Поясним это примером.

Исследование биотоков мышц показало, что из-за возможности их съема непосредственно на мышцах удается определить информацию, посылаемую к мышцам (исполнительным, управляемым органам) центральной нервной системой (управляющей системой). Было установлено также, что биотоки могут возникать в мышце при команде центральной нервной системы и без выполнения команды, например в случае отсутствия конечности или ее части.

Эти свойства биотоков мышц позволили разработать активные протезы конечностей. Обычный протез, например ноги, восстанавливал лишь часть функции - опору, функция управления и координации в нем отсутствовала.

Разработаны протезы конечностей с биоэлектрическим управлением. Для управления такими конечностями разработаны специальные системы, в которые входят устройства съема биопотенциалов, усилитель и преобразователь, усиливающий сигнал и трансформирующий его в форму, пригодную для управления механической частью протеза (электродвигатели, редукторы и т.п.) и приведения в движение собственно протеза (кисть руки, пальцы, стопа ноги и т.д.).

С помощью преобразователей (датчиков), воспринимающих внешние воздействия на искусственный орган, осуществляется обратная связь: электрический сигнал с преобразователя трансформируется в сиг-

нал, подобный импульсам в воспринимающих нервах живого организма, и посылается от периферии к центру через неповрежденные участки кожи больной конечности.

3. Автоматизированные системы управления и возможности применения их для организации здравоохранения. В предыдущих разделах в основном делался акцент на процессы управления в биологических системах. Однако в своем первородном варианте термин «управление» больше си-нонимизировался с понятием «руководство» и относился к управлению хозяйством, предприятием, т.е. коллективом людей, выполняющих определенную цель. Такое понимание управления, разумеется, также является кибернетическим и, следовательно, процесс управление-руководство может быть оптимизирован с использованием методов и технических средств кибернетики.

Такая оптимизация привела к созданию в народном хозяйстве автоматизированных систем управления (АСУ). АСУ отличается от традиционных форм управления тем, что в них широко используют вычислительную технику для сбора и переработки информации, а также новые организационные принципы для реализации наиболее эффективного управления соответствующим объектом (системой).

Объекты управления АСУ различны как по своим масштабам, так и по назначению: участок цеха, кабинет врача, приемное отделение, предприятие, школа, больница, здравоохранение, отрасль промышленности, народное хозяйство страны и т.д.

В зависимости от уровня иерархии АСУ подразделяют на отдельные системы. Так, например, практически в любой отрасли хозяйства можно выделить отраслевую автоматизированную систему управления (ОАСУ).

Здравоохранение есть отрасль народного хозяйства, поэтому для управления этой отраслью была создана ОАСУ «Здравоохранение».

Не вдаваясь в детали такой ОАСУ, что является задачей специального курса в медицинском вузе, отметим лишь ее некоторые особенности.

Любые ОАСУ могут строиться на основе моделей, которые учитывают не только связи внутри данной отрасли, но и межотраслевые связи, т.е. взаимоотношение данной системы со всем народным хозяйством. Применительно к ОАСУ «3дравоохранение» модель должна включать как блок управления, так и другие элементы: профилактику, лечение (с диагностикой), медицинскую науку, кадры, материальное обеспечение.

Каждый из перечисленных элементов (блоков) ОАСУ связан как с элементами этой же системы, так и с другими системами. Проиллюстрируем это на примере профилактики заболеваний. Она включает иммунизацию населения, массовые медицинские осмотры, медицинское

просвещение и др. Массовые медицинские осмотры связаны с наличием подготовленных врачебных кадров, обеспеченностью аппаратурой и др. (внутренние связи и зависимости), состоянием и развитием промышленных предприятий, размещением населения по географическим зонам и др. (внешние связи, выходящие за пределы данной ОАСУ).

Кибернетик - это специалист, который занимается изучением управления информационными процессами в системах, а также механизмами ее передачи там. Кибернетика возникла на стыке большого количества наук. Она имеет свои связи с огромным количеством всевозможных дисциплин: психологией, социологией, биологией, информатикой и так далее. Можно сказать, что кибернетика - которая изучает управляющие системы.

Немного о системах

Система - это упорядоченная совокупность элементов, между которыми происходит какое-то взаимодействие и которая направлена на реализацию определенной задачи. Основное правило систем - это то, что ни одна из них не является банальной совокупностью всех элементов. В качестве примера можно привести любую систему. Если бы компьютер был банальной совокупностью деталей, он бы просто не работал.

Кибернетик - это специалист, который изучает и компьютер в том числе. Также в сферу его научных интересов входят задачи, которые компьютером выполняются. Исходя из того, насколько это эффективно, оцениваются возможности для совершенствования определенной системы. Компьютер является управляемой системой. Это означает, что она может изменяться под воздействием человека. Есть и неуправляемые системы, например Вселенная. Она не входит в сферу интересов кибернетиков по той причине, что не может управляться людьми.

Чем занимаются кибернетики?

Кибернетик - это ученый, который занимается целым спектром разнообразных исследований:

  • Искусственный интеллект.
  • Человеческий организм.
  • Сложные информационные системы, такие как компьютеры и их сети.

Кибернетика делится на множество разнообразных отраслей, которые базируются на связях между определенными научными дисциплинами. Например, есть психологичная или техническая. В общем, существует целый спектр отраслей, на которые распространяется кибернетика. Это очень распространённая наука, которая используется везде. Давайте более детально разберемся с ветками данной дисциплины.

Психологическая кибернетика

Психологическая кибернетика - предмет которой во многом схож с общей психологией, а также нейрофизиологией. Но это уже другой разговор. Данная отрасль изучает взаимодействие между разными анализаторными системами и обменом информации внутри человеческого мозга. Также данная наука занимается построением реалистичных моделей определённых психических функций. Давайте рассмотрим более детально их, чтобы было немного понятнее:

  1. Мышление. Каждый человек по-своему мыслит. По своей природе данный психический процесс является способом отражения окружающей действительности человеческой психикой, которое выражается в суждениях, умозаключениях и понятиях. Каждый человек имеет свой стиль мышления, специфичный конкретно для него. Поэтому можно говорить о том, что данный стиль имеет определенные характеристики, смоделировать которые и пытаются кибернетики.
  2. Память. Не все человек может запомнить, равно как и механизм запоминания у каждого человека индивидуальный. При этом кибернетики стараются выделить какие-то общие свойства и построить на их основе реалистичные модели, которые помогут психологам более эффективно взаимодействовать с человеком.
  3. Ощущение - действительности, которое основано на непосредственном воздействии отдельных частей окружающей действительности на наши органы чувств. Для того чтобы человек мог что-то ощущать, ему нужно перед этим переработать информацию. И данные механизмы переработки изучаются психологической кибернетикой.

Естественно, это не все сферы, которые входят в круг интересов психологической кибернетики. Но и этих достаточно для того, чтобы раскрыть данную отрасль.

Экономическая кибернетика

Также достаточно часто экономические вопросы изучает кибернетика. кибернетика" такое: данная сфера старается использовать открытие кибернетиков по отношению к разнообразным экономическим системам. Поскольку последние являются в целом управляемыми, то рассматриваемая дисциплина имеет к ним непосредственное отношение.

Если брать более расширенное определение, то экономическая кибернетика - это наука, которая была образована на стыке целых трех наук: математики, экономики и непосредственно кибернетики. И этим она ценна.

Выводы

Мы разобрались, что такое кибернетика. Значение этого слова стало нам понятно. И это прекрасно. Не нужно теперь думать, что означает слово "кибернетика", так как некоторые люди, возможно, даже решили посвятить данной науке свою жизнь после прочтения этой статьи. Хочется на это надеяться. Ученый-кибернетик может считаться универсальным специалистом в любой сфере. Ведь большая часть областей нашей жизни базируется на управляемых системах, которые входят в сферу изучения этой науки. Поскольку она становится с каждым днем все популярнее, то можно смело говорить: за искусственным интеллектом - будущее. Кибернетик - это настоящий универсал. Этим он и ценен.

от греч. ??????????? (?????) – искусство управления, от???????? – правлю рулем, управляю ] – наука о процессах управления в сложных динамич. системах, основывающаяся на теоретич. фундаменте математики и логики, а также на применении средств автоматики, особенно электронных вычислит., управляющих и информационно-логич. машин. Возникновение К. Элементарными методами, именуемыми в наше время кибернетическими, человечество эмпирически пользовалось издавна – во всех: тех случаях, когда необходимо было управлять к.-л. сложным развивающимся процессом для достижения определ. цели в заданное время. По мере усложнения производственно-технич. процессов, роста взаимодействия множества людей, участвующих в хозяйственной, политич. и воен. деятельности, вовлечения в нее большого количества материальных средств и энергетич. ресурсов все чаще стало давать себя знать противоречие между потребностями улучшения управления, к-рое должно было становиться все более оперативным, основанным на достаточной и своевременно поступающей информации, и реальными возможностями такого улучшения. С наибольшей остротой вопрос о повышении качества управления встал начиная с 40-х гг. 20 в. Это и привело к возникновению К., к-рая открыла дорогу применению точного научного анализа к решению проблемы целесообразного использования соврем. технич. средств для повышения качества управления. К. базируется на достижениях ряда отраслей соврем. науки и техники и, в свою очередь, благотворно влияет на их развитие. Ее возникновение тесно связано, с одной стороны, с работами по созданию сложных автоматич. устройств, а с др. – с развитием наук, изучающих процессы управления и обработки информации в конкретных областях действительности. В подготовке и развитии К. сыграли роль многие области знания: теорий автоматич. регулирования и следящих систем; термодинамика; статистич. теория передачи сообщений; теория игр и оптимальных решений; математич. логика; математич. экономика и др., а также комплекс биологич. наук, изучающих процессы управления в живой природе (теория рефлексов, генетика и др.). Решающую роль в становлении К. имело развитие электронной автоматики и появление быстродействующих электронных вычислит. машин, открывших новые возможности в обработке информации и в моделировании различных систем управления. Осн. идеи К., как особой дисциплины, являющейся синтезом целого ряда направлений научной и технич. мысли, были сформулированы в 1948 Н. Винером в кн. "Cybernetics or control and communication in the animal and the machine", N. Y. (рус. пер. "Кибернетика, или управление и связь в животном и машине", М., 1958). Выдающееся значение для создания К. имели труды К. Шеннона и Дж. Неймана. Еще раньше важную роль в генезисе идей К. сыграли амер. ученый Дж. У. Гиббс и И. П. Павлов. Следует отметить заслуги рус. и сов. школ математиков и инженеров (И. А. Вышнеградской, А. М. Ляпунов, А. А. Андронов, Б. В. Булгаков, А. Н. Колмогоров и др.), к-рые способствовали становлению и развитию К. Предмет К. Предметом изучения К. являются сложные устойчивые динамич. системы управления. Под динамической понимается такая система, состояние к-рой меняется и к-рая содержит в себе множество более простых, взаимосвязанных и взаимодействующих друг с другом систем и элементов. Состояние сложной динамич. системы в целом, так же как и отдельных ее элементов, определяется значениями, к-рые принимают параметры, характеризующие систему и меняющиеся по различным закономерностям. Сложная динамич. система, рассматриваемая с т. зр. процессов и операций управления, т.е. процессов и операций, переводящих ее из одного состояния в другое и обеспечивающих ее устойчивость, наз. системой управления. Всякая система управления (система управления артиллерийским огнем; система управления нар. х-вом, отраслью пром-сти, предприятием, транспортным х-вом и т.д.; система управления кровообращением, пищеварением и т.п. живого организма) состоит из двух систем: управляющей и управляемой. Управляющая система воздействует на параметры управляемой системы с целью перевода ее в новое состояние в соответствии с имеющейся задачей управления. Следует различать три осн. области управления: управление системами машин, производств. процессами и вообще процессами, имеющими место при целенаправл. воздействии человека на предметы труда и процессы природы; управление организов. деятельностью человеч. коллективов, решающих ту или иную задачу (напр., организаций, осуществляющих военные, финансовые, кредитные, страховые, торговые, транспортные и др. операции); управление процессами, происходящими в живых организмах (сюда относятся высокоцелесообразные физиологич., биохимич. и биофизич. процессы, связанные с жизнедеятельностью организма и направленные на его сохранение в изменяющихся условиях существования). Во всех указанных областях имеются устойчивые динамические системы, в которых самопроизвольно или же принудительно осуществляются процессы управления; при этом часто имеют место сложные взаимодействия управляющих и управляемых систем. Примером могут служить живые организмы, в к-рых функции управляющих и управляемых систем непрерывно и многократно переплетаются. То общее, что имеется в процессах управления в самых различных областях, независимо от их физич. природы, и составляет предмет К.; сами же эти области выступают как сферы применения К. Правомерность существования К. как науки обусловлена универсальностью процессов управления, создание единой теории к-рых является ее главной задачей. Хотя К. занимается изучением сложных развивающихся процессов различной природы, она исследует их только с т. зр. механизма управления. Ее не интересуют проявляющиеся при этом энергетич. соотношения, экономич., эстетич., общественная сторона явлений. Взаимосвязи управляющих и управляемых систем в К. изучаются лишь в той мере, в какой они допускают выражение средствами математики и логики. При этом в К. ставится задача выработать рекомендации по наилучшим приемам и методам управления для быстрейшего достижения поставленной цели. К. изучает процессы управления прежде всего с целью повышения эффективности человеч. деятельности. К. можно подразделить на теоретич. К. (математич. и логич. основы, а также филос. вопросы К.), технич. К. (конструирование и эксплуатация технич. средств, применяемых в управляющих и вычислит. устройствах) и прикладную К. (приложения теоретич. и технич. К. к решению задач, относящихся к конкретным системам управления в различных областях человеч. деятельности, – в пром-сти, в энергоснабжении, на транспорте, в службе связи и т.п.). Т.о., К. – это наука об общих принципах управления, о средствах управления и об использовании их в технике, в человеч. об-ве и в живых организмах. Основные понятия и разделы т е о р е т и ч е с к о й К. Для любых процессов управления характерно наличие: системы, состоящей из управляемой и управляющей частей; цели управления; алгоритма управления; взаимодействия данной системы управления с внешней средой, являющейся источником случайных или систематич. помех, а также осуществление управления на основе приема и передачи информации. Системы, в к-рых процессы управления обеспечивают их устойчивость в меняющихся условиях внешней среды, наз. устойчивыми динамич. системами управления, или организованными системами. Наличие цели – характерная черта любого процесса управления; управление – это организация целенаправленного (целесо-образного) воздействия. Задача (цель) либо ставится в самом начале управления, либо вырабатывается в процессе управления. В общем случае целью управления является приспособление данной динамич. системы к внешним условиям, необходимое для ее существования или для выполнения свойственных ей функций. Управление всегда осуществляется на основе приема, сохранения, передачи и переработки информации в условиях взаимодействия данной динамич. системы с внешней средой. Процесс функционирования системы управления (процесс управления) в общем случае осуществляется по след. схеме. Управление начинается со сбора информации о ходе процесса, подлежащего управлению (об управляемой системе); эта информация преобразуется в удобный для передачи по каналам связи вид и поступает в управляющую систему (напр., человеч. мозг или управляющую машину). Используя определ. правила или возможности, управляющая система перерабатывает получаемую информацию в соответствии со стоящими перед ней задачами, в результате чего вырабатываются команды управления; последние передаются в исполнит. механизмы или органы и, воздействуя на параметры управляемой системы, изменяют ее состояние. Весьма важным, характерным для всех сложных случаев управления, является использование обратных связей. Сущность обратной связи состоит в том, что от исполнит. органов (органов управляемой системы) к управляющим органам по особым каналам связи (наз. каналами обратной связи) передается информация о фактич. положении этих органов и о наличии внешних воздействий; эта информация используется управляющими органами для выработки команд управления. Обратные связи в передаче информации позволяют учитывать управляющей системой фактич. состояние органов управляемой системы, а также воздействия на нее внешней среды. Понятие информации является одним из основных в К., а теория информации занимает существенное место в комплексе дисциплин, составляющих теоретич. фундамент К. Больше того, К. часто вообще характеризуют как науку о способах восприятия, передачи, хранения, переработки и использования информации в машинах, живых организмах и их объединениях. Передача информации осуществляется при помощи сигналов – физич. процессов, у к-рых определ. параметры находятся в определенном (обычно однозначном) соответствии с передаваемой информацией. Установление такого соответствия наз. кодированием. Хотя на передачу сигналов расходуется энергия, количество ее в общем случае не связано с количеством, а тем более с содержанием передаваемой информации. В этом состоит одна из принципиальных особенностей процессов управления: управление большими потоками энергии может осуществляться при помощи сигналов, требующих для своей передачи незначит. количества энергии. Получившая в наст. время широкое развитие т. н. статистич. теория информации возникла из потребностей техники связи и указывает пути повышения пропускной способности и помехоустойчивости каналов передачи информации. Главной задачей этой теории является определение меры количества информации в сообщениях в зависимости от вероятности их появления. Редким сообщениям приписывается большее количество информации, а частым – меньшее; количество информации в сообщении измеряется изменением в степени неопределенности ожидания нек-рого события до и после получения сообщения о нем. Статистич. теория информации имеет фундаментальное науч. значение, далеко выходящее за пределы теории связи. Установлена глубокая аналогия и связь между понятием энтропии в статистич. физике и статистич. мерой количества информации. Энтропия любой физич. системы может рассматриваться как мера недостатка информации в данной системе. С увеличением энтропии системы количество информации уменьшается, и наоборот. В связи с этим представляется возможным подойти с количеств. стороны к оценке информации, содержащейся в физич. законах, к информации, получаемой при физич. экспериментах, и т.д. Статистич. теория информации позволяет также получить общее определение понятия о р г а н и з а ц и и и количеств. меру для оценки степени организации любой системы. Именно, степень организации измеряется тем количеством информации, к-рое нужно ввести в систему, чтобы перевести ее из начального беспорядочного состояния в заданное организованное состояние. Однако в статистич. теории информации не учитывается смысл и ценность передаваемых сообщений, а также возможность дальнейшего использования полученной информации. Эти вопросы составляют предмет др. науч. направления – семантич. теории информации, к-рая находится в стадии становления. Семантич. теория информации занимается изучением сущности процессов выработки информации живыми организмами, исследованием возможностей и методов автоматич. опознавания образов, классификацией информации, изучением процессов выработки понятий и т.п. Вопросы, относящиеся к области этой теории, приобретают значение в связи с работами по моделированию процессов накопления "опыта" и опознавания образов, свойственных живым организмам, с помощью как электронных программно-управляемых машин универс. назначения, так и спец. устройств. К числу дисциплин, составляющих теоретич. основу К., помимо теории информации, относятся: теория программирования, теория алгоритмов, теория управляющих систем, теория автоматов и нек-рые др. Теория программирования в широком смысле может рассматриваться как теория методов управления. Она исследует способы использования информации с целью определения линии поведения (программы) управляющих систем в зависимости от конкретной обстановки. Способность в той или иной степени оценивать обстановку и вырабатывать нек-рую программу поведения – вырабатывать решения, приводящие к достижению нек-рой цели, – присуща любым системам управления, как естественным (системы живой природы), так и искусственным (технич. устройства). По своему характеру процессы выработки решений весьма многообразны. Они могут осуществляться, напр., в виде случайного выбора решения, в виде выбора по аналогии, путем логич. анализа и т.д. В К. для анализа систем управления широко используются математич. методы выработки оптимальных (т. е. наилучших в к.-л. отношении) решений, таких, как линейное и динамич. программирование, статистич. методы нахождения оптимальных решений и методы теории игр. После того как определена общая линия поведения системы, необходимо выяснить, какие конкретные шаги и в какой последовательности нужно осуществить, для того чтобы достигнуть поставленной цели. При решении этой задачи используются средства теории алгоритмов. Следующий круг вопросов; относящихся к методике управления, связан с исследованием возможностей реализации выработанных решений и алгоритмов в системах, обладающих определ. свойствами; он составляет сферу общей теории программирования. Теория программирования в узком смысле этого слова занимается разработкой методов автоматизации процессов переработки информации и способов представления различных алгоритмов в форме, необходимой для их реализации на электронных программно-управляемых машинах. Одна из осн. задач К. – сравнит. анализ и выявление общих закономерностей процессов переработки информации и управления, происходящих в естеств. и искусств. системах. К. выделяет следующие осн. классы таких процессов: мышление; рефлекторная деятельность живых организмов; изменение наследств. информации в процессе биологич. эволюции; переработка информации в различных автоматич., экономич. и административных системах, а также в науке. Общее описание управляющих систем, их взаимодействия с управляемыми системами, а также разработка методов построения управляющих систем составляют задачу теории управляющих систем. Примерами управляющих систем, на основе изучения к-рых строится эта теория, могут служить: нервная система животного, программно-управляемые вычислит. машины, системы управления технологич. процессами и др. Большую роль в теории управляющих систем играет рассмотрение абстрактных систем управления, представляющих собой математич. схемы (модели), сохраняющие информац. свойства соответств. реальных систем. В рамках К. возникла спец. логико-математич. дисциплина – теория автоматов, изучающая важный класс абстрактных автоматов, т.н. дискретные автоматы, т.е. системы, в к-рых перерабатываемая информация выражается квантованными сигналами, множество к-рых конечно. Значит. место в теории автоматов занимает логико-математич. анализ т. н. нервных (или нейронных) сетей, моделирующих функциональные элементы мозга. Важным свойством сложных систем управления является иерархичность управления, к-рая состоит в том, что для реализации нек-рой функции управления строится ряд механизмов (или алгоритмов) с последовательно возрастающими уровнями управления. Непосредств. управление исполнит. органами осуществляет гл. обр. механизм управления низшего уровня. Работу этого механизма контролирует механизм 2-го уровня, к-рый сам контролируется механизмом 3-го уровня и т.д. Сочетание принципа иерархичности управления с принципом обратной связи придает системам управления свойство устойчивости, состоящее в том, что система автоматически находит оптимальные состояния при довольно широком круге изменений внешней обстановки. Эти принципы обеспечивают приспособляемость систем управления к изменяющимся условиям и лежат в основе биологич. эволюции, процессов обучения и приобретения опыта живыми организмами в течение их жизни; постепенная выработка условных рефлексов и их наслаивание являются не чем иным, как повышением уровней управления в нервной системе животного. Принципы иерархичности управления и обратной связи используются также при построении сложных управляющих систем в технике. При изучении систем управления возникают два рода вопросов: один из них относится к анализу структуры системы управления и определению алгоритма, реализуемого ее управляющими органами; другой – к синтезу (из данных элементов) системы, обеспечивающей выполнение заданного алгоритма. Общими требованиями, к-рыми руководствуются при этом, являются обеспечение заданного быстродействия системы, точности работы, минимального количества элементов и надежности функционирования системы. Весьма плодотворным при исследовании структуры систем управления, в т.ч. экономич. систем, военных или административных организаций, является метод их математич. моделирования. Он состоит в представлении исследуемого процесса в виде системы уравнений и логич. условий. Общий алгоритм (система уравнений) моделирования любого процесса включает в себя, как правило, две осн. части: одна часть описывает работу исследуемой системы управления (или управляющего алгоритма, если изучается к.-л. новый управляющий алгоритм), а вторая часть описывает (моделирует) внешнюю обстановку. Повторяя многократно процесс решения системы уравнений при ее различных характеристиках, можно изучить закономерности моделируемого процесса, оценить влияние отд. параметров на его протекание и выбрать их оптимальные значения. Кроме математич. моделирования, в К. применяются и др. виды моделирования, сущность к-рых сводится к замене изучаемой системы изоморфной ей системой (см. Изоморфизм), к-рую удобнее воспроизвести и изучить в лабораторных условиях. Особый интерес с т. зр. К. представляют самоорганизующиеся системы управления, обладающие свойством самостоятельно переходить из произвольных начальных состояний в определ. устойчивые состояния. Состояние таких систем изменяется под влиянием внешних воздействий случайным образом, но благодаря спец. регулирующим механизмам высших уровней эти системы отбирают наиболее устойчивые состояния, соответствующие характеру внешних воздействий. Свойство самоорганизации может проявляться только у систем, обладающих определ. степенью сложности, в частности избыточностью структурных элементов, а также случайными, меняющимися в результате взаимодействия с внешней средой, связями между нек-рыми из них. К таким системам относятся, напр., сети нейронов мозга, нек-рые типы колоний живых организмов, искусств. самоорганизующиеся электронные системы, а также нек-рые типы сложных экономич. и адм. объединений. По своим теоретич. методам К. является математич. наукой, широко использующей аналогии и моделирование. А. Н. Колмогоровым выдвинута более широкая трактовка теоретич. К., охватывающая не только математич. теорию процессов управления, но и систематич. изучение различных физич. принципов работы систем управления с т. зр. их способности нести и перерабатывать информацию. При этом в К. включается рассмотрение таких, напр., вопросов, как зависимость предельного быстродействия систем управления от их размеров, обусловленная конечностью скорости распространения света, ограничения возможностей систем малых размеров в однозначной переработке информации, связанные с проявлением законов квантовой физики, и т.п. Такой подход открывает широкие возможности дальнейшего развития К. Значение К. для науки и т е х н и к и. Значение К. для научно-технич. прогресса определяется возросшими в наст. время требованиями к точности и быстродействию систем управления, а также усложнением самих процессов управления и связано прежде всего с созданием и внедрением электронных вычислит. машин. Эти машины работают по заранее составленным программам, способны выполнять сотни тысяч и миллионы арифметич. и логич. операций в секунду и обладают запоминающими устройствами для хранения многих миллионов чисел. Можно выделить две осн. области применения К. в технике: 1) для управления машинами и комплексами машин в промышленности, на транспорте, в военном деле и т.д.; 2) применение средств К., особенно вычислит. машин, для выполнения трудоемких расчетов и моделирования различных динамич. процессов. Наиболее яркий пример – применение электронных машин для расчетов траекторий движения искусств. спутников земли, межконтинентальных и космич. ракет и др. Применение электронных машин в области науч. и технич. исследований и разработок позволяет во мн. случаях сократить эксперимент. исследования и натурные испытания, что приводит к значит. экономии материальных средств и времени при решении науч. проблем и создании новой техники. Большие перспективы для повышения производительности науч. работы имеет проблема непосредств. взаимодействия человека и информац. машины в процессе творч. мышления при решении науч. задач. Науч. творчество включает в себя значит. работу по подбору информации, ее обобщению и представлению в форме, удобной для анализа и выводов. Такая работа вполне может выполняться машиной в соответствии с запросами и указаниями человека. Вычислит, машины уже находят практич. применение в области автоматизации научно-информационной работы и перевода иностр. текстов. Эти машины имеют особенное значение в связи с ростом объема науч. и др. литературы. В силу характера К., как науки о закономерностях процессов, протекающих в системах управления самой различной природы, она развивается в тесной связи с целым рядом др. областей знания. Применение результатов и методов К., использование электронных вычислит. машин уже показали свою плодотворность в биологич. науках (в физиологии, генетике и др.), в химии, психологии и т.д. Идеи и средства К. и математич. логики, будучи примененными к изучению языка, породили новое науч. направление – лингвистику математическую, являющуюся основой для работ в области автоматизации перевода с одного языка на другой и играющую важную роль в разработке информационно-логич. машин для различных областей знания. С др. стороны, фактич. материал наук, имеющих дело с реальными системами управления и переработки информации, а также возникшие в этих науках проблемы являются источником дальнейшего развития К. как в ее теоретическом, так и в связанном с техникой аспектах. Так, за последние годы возникла новая область технической К. – б и о н и к а, занимающаяся изучением систем управления и чувствит. органов живых организмов с целью использования их принципов для создания технич. устройств. Разработка подобных систем, в свою очередь, позволяет более глубоко подойти к пониманию процессов, происходящих в системах управления живой природы. В качестве примера можно указать на изучение структуры мозга, обладающего исключит. надежностью. Выход из строя довольно значит. участков мозга в результате операций иногда не приводит к потере к.-л. функций за счет своеобразной их компенсации др. участками. Это свойство представляет большой интерес для техники. С филос. т. зр. большое значение имеет то, что К., особенно такие ее разделы, как теория самоорганизующихся систем, теория автоматов, теория алгоритмов и др., а также развившиеся в рамках К. методы моделирования способствуют более глубокому изучению систем управления живых организмов, раскрытию закономерностей функционирования нервной системы животных и человека, познанию характера взаимодействия между организмом и внешней средой, изучению механизмов мышления; особенно большое научное и практич. значение имеет исследование с кибернетич. т. зр. деятельности головного мозга человека, к-рый обеспечивает возможность восприятия и переработки огромного количества информации в органах малого объема с ничтожной затратой энергии. Этот комплекс проблем является источником важных идей К., в частности, идей, относящихся к путям создания новых автоматич. устройств и вычислит. машин. Методика применения К. в нейрофизиологии в общих чертах такова. На основе эксперимент. исследования, данных физиологии и результатов К. строится рабочая гипотеза о нек-рых механизмах работы головного мозга. Правильность и полнота этой гипотезы проверяются при помощи моделирования; в универсальную вычислит. машину (или спец. автоматич. устройство) вводится программа, выражающая эту гипотезу; анализ работы машины показывает, насколько полным и точным было содержавшееся в гипотезе представление об изучаемых механизмах мозга. Если эти механизмы изучены неполно и гипотеза несовершенна, то машина не будет обнаруживать (т.е. моделировать) тех процессов, к-рые пытаются в ней воспроизвести. В этом случае анализ работы кибернетич. модели может привести к выявлению дефектов гипотезы и к постановке новой серии экспериментов; на основе последних выдвигается новая гипотеза и строится более совершенная модель и т.д., пока не удастся построить автомат, достаточно хорошо моделирующий изучаемые нервно-физиологич. процессы; осуществление такого автомата подтверждает справедливость представлений, составляющих гипотезу. Такой способ исследования, с одной стороны, приводит к созданию новых, более сложных автоматов (программ), а с другой – к более полному выявлению механизмов работы головного мозга. В частности, применение его показало, что возможно дать анализ сложных форм функционирования головного мозга на основе относительно простых принципов. На этом пути удалось, напр., найти подход к анализу способности головного мозга решать сложные проблемы (и создать специальные автоматы, моделирующие решение этих проблем); достигнуть успехов в изучении проблем обучения и самообучения и т.д. Для изучения проблемы обучения и создания самообучающихся систем большое значение приобретает использование принципов выработки условных рефлексов и вообще методов изучения головного мозга, разработанных И. П. Павловым. Эти методы помогают в решении проблемы отбора из всей поступающей в управляющую систему информации той ее части, к-рая имеет достоверный и полезный для данной системы характер, а также в решении проблемы сокращения числа пробных взаимодействий с внешней средой и в др. вопросах. С проблемами этого рода тесно связаны работы по изучению принципов оптимальной организации поисковых действий в неизвестной среде и исследования по выявлению методов оптимального управления сложными системами. Для более глубокого анализа нек-рых сложных форм работы мозга большое значение имеют исследования по созданию машин, способных опознавать образы, и особенно машин, способных обучаться такому опознаванию; эти исследования непосредственно связаны с работами по конструированию автоматов, могущих воспринимать человеч. речь и "читать" печатный текст. Следует отметить также кибернетич. модели "черепах", "мышей" и т.д., действиям к-рых придается внешнее сходство с поведением животных; эти модели приобретают научную ценность в том случае, если преследуют цель проверки к.-л. научных гипотез. Большое значение для исследования принципов управления и переработки информации в головном мозге имеет разработка теории нервных сетей, в создании к-рой большую роль сыграли У. Мак-Каллок и В. Питс. В основе деятельности мозга лежит функционирование сложных систем особым образом соединенных между собой нейронов; в этих системах проявляются закономерности, отсутствующие в работе отд. нейронов или относительно простых их групп. Изучение таких систем связано с большими трудностями, для преодоления к-рых приходится сочетать эксперимент. исследования с использованием метода моделирования и абстрактно-математич. способа рассмотрения, в частности аппарата совр. логики. Значение теории нервных сетей состоит в том, что, эта теория служит источником рабочих гипотез, к-рые проверяются на экспериментальном нейро-физиологич. материале. В случае, если анализу подлежат сложные формы деятельности мозга (обучение, узнавание образов и т.п.), средств одной лишь теории нервных сетей оказывается недостаточно; поэтому приходится начинать с изучения системы правил переработки информации, лежащих в основе изучаемых форм деятельности мозга, и лишь потом создавать гипотезы о структуре реализующей их нервной сети и строить ее логико-математич. модели. Большой интерес для нейрофизиологии представляет разработка моделей, включающих случайным образом соединенные между собой элементы и способных в процессе работы самоорганизовываться и приобретать целесообразное поведение, а также изучение различных форм кодирования информации в центральной нервной системе и перекодирования ее в нервных центрах. Использование теории вероятностей и теории информации открывает путь точному анализу закономерностей переработки информации в нервной системе. Большой интерес с т. зр. К. представляет изучение естеств. способов кодирования наследств. информации, обеспечивающих сохранение огромных количеств информации в ничтожных объемах наследств. вещества, содержащего уже в зародышевой клетке осн. признаки взрослого организма. Результатом взаимодействия К; с др. областями знания является углубление связи К. с практикой. Так, осуществляемый средствами К. анализ работы самоорганизующихся систем управления, функционирующих в организме человека и животных, все более приобретает непосредственно практич. значение. Напр., К. уже оказывает существ. помощь в борьбе за здоровье людей. Причины многих заболеваний (грудная жаба, гипертония и др.) тесно связаны c нарушением процессов управления деятельностью внутр. органов, осуществляемого головным мозгом; большую роль в развитии заболеваний играет возникновение патологич. форм управления, вызывающих стойкое изменение в функционировании отд. органов и систем организма; кибернетич. подход к изучению такого рода болезней указывает новые пути мед. воздействия на больной организм. Использование К. в невропатологии и психиатрии привело в наст. время к созданию представлений о нейрофизиологич. механизмах возникновения треморов, нарушений координации движений, психозов навязчивости и др.; на этой основе разрабатываются новые методы нейрохирургич. лечебного вмешательства. Использование К. позволила создать ряд аппаратов, возмещающих утраченные или временно выключенные функции организма (таковы, напр., автомат "Сердце-легкие", позволяющий полностью отключить сердце и малый круг кровообращения, заменяя то и другое на время хирургич. вмешательства; активные моторизованные протезы конечностей, управляемые биоэлектрич. потенциалами мышц культи; автоматы для искусств. дыхания и др.). Проводятся эксперименты по созданию приборов для чтения для слепых. Во все возрастающей степени К. используется для целей мед. диагностики. С ее помощью реализован ряд синтез-анализаторных аппаратов для автоматич. получения картины движения электрич. диполя сердца (по электрокардиограммам), для анализа биоэлектрич. потенциалов мозга, для синтезирования целостной картины электрич. поля мозговой коры и для вариационно-статистич., аутокорреляционной и т.д. обработки кривых патофизиологич. процессов. В отд. клинич. отраслях ведутся работы по программированию сводных диагностич. таблиц, основываемых на массовом материале и обещающих в будущем возможность использовать консультацию электронных машин в постановке диагнозов в сложных случаях и на ранней стадии тяжелых заболеваний. К. в социалистическом о б щ е с т в е. В обществе имеются области управления, к к-рым применима К.; таковы машины и системы машин, технологич. процессы, транспортные операции, деятельность коллективов людей, решающих определ. задачи в области экономики, воен. дела и т.д. По мере прогресса обществ. произ-ва, науки и техники, с одной стороны, растут трудности в организации управления, а с другой – повышаются требования к его качеству, т.к. управление должно становиться все более и более точным и оперативным. Особенно большие требования предъявляются к процессам управления в социалистич. об-ве, т.к. в нем осуществляется п л а н о в о е развитие экономики и культуры. Ленин неоднократно указывал на значение науч. организации управленч. труда. В статье "Лучше меньше, да лучше", советуя привлекать к работе в советском госаппарате безупречных коммунистов и рабочих, он обратил внимание на то, что они "...должны выдержать испытание на знание основ теории по вопросу о нашем госаппарате, на знание основ науки управления..." (Соч., т. 33, с. 449). Ленин требовал науч. разработки вопросов организации труда и специально труда управленческого. Следуя указаниям Ленина, КПСС всегда уделяла большое внимание совершенствованию процессов управления в сов. об-ве. Для разработки методов управления, для повышения эффективности управленч. труда в социалистич. об-ве применение К. имеет исключительно важное, общегосударств. значение. К. вырабатывает такие методы, создает, такие науч. и технич. средства, к-рые позволяют осуществлять в оптимальном режиме процессы управления в нар. х-ве и адм. деятельности, в н.-и. работе, т.е. достигать поставл. целей с наименьшими затратами времени, труда, материальных средств и энергии. Планомерное, осуществляемое под руководством Коммунистич. партии и социалистич. гос-ва применение средств К. имеет важнейшее значение для оптимального управления целенаправленным, высокоэффективным и хорошо организованным трудом строителей коммунизма. Поэтому КПСС требует полностью использовать и поставить на службу строительству коммунизма науч. и технич. возможности К. В ходе развернутого строительства коммунизма в СССР, как говорится в Программе КПСС, получат широкое применение "...кибернетика, электронные счетно-решающие и управляющие устройства в производственных процессах промышленности, строительной индустрии и транспорта, в научных исследованиях, в плановых и проектно-конструкторских расчетах, в сфере учета и управления" (1961, с. 71). К. составляет теоретич. фундамент комплексной автоматизации производств. процессов. Совр. уровень развития производит. сил социалистич. об-ва требует все более широкого применения в управлении учреждениями, предприятиями, цехами, производств. участками и т.д. автоматизированных систем, основанных на использовании методов К. и электронной вычислит. техники. Успешное осуществление автоматизации создает возможности для резкого повышения производительности труда, увеличения выпуска продукции, достижения ее оптимальной себестоимости и улучшения качества. Важнейшее значение имеет применение К. в управлении экономикой и в экономич. исследованиях, а также в сфере учета, статистики, адм. деятельности, коммуникаций и т.д. Говоря о приложении К. в экономике, следует различать применение электронных машин для автоматизации процессов сбора и переработки информации и применение математич. средств К. (аппарата теории игр, линейного и динамич. программирования, теории массового обслуживания, методов исслед

Понравилась статья? Поделиться с друзьями: